

Principles for Evaluating Misuse
Safeguards of Frontier AI
Systems
Version 1.0

Safeguards Analysis Team

UK AI Safety Institute

Department for Science,
Innovation and Technology

Executive Summary
Misuse safeguards—technical interventions implemented by frontier AI
developers to prevent users from eliciting harmful information or actions from
AI systems—are an important tool in addressing potential risks from the
misuse of these systems. In many parts of machine learning, establishing
clear problem statements and evaluations drives and accelerates progress,
and we think this same lesson applies to safeguards. To this end, we propose
five principles for rigorous evaluations of misuse safeguards, which form a
step-by-step plan for safeguards assessment. We additionally release a
lightweight template designed to enable developers to draw from our
recommendations as they perform safeguards assessment. These
documents aim to drive standardisation and rigour in how safeguards
evaluations are performed, which we expect will become increasingly
important as AI capabilities advance. We encourage frontier AI developers to
use our principles and template, and to share their experience and feedback
to help us improve safeguards evaluations going forwards.

An overview of our recommendations for evaluating misuse safeguards.
We recommend frontier AI developers follow a 5-step plan for rigorous assessment of
misuse safeguards, starting from stating the requirements safeguards need to satisfy
and the safeguards that will be used, then gathering evaluations of the effectiveness of
the safeguards and describing the plan for post-deployment assessment, and finally
assessing all the evidence and post-deployment assessment plan and deciding whether
they are jointly sufficient.

https://www.aisi.gov.uk/work/principles-for-safeguard-evaluation

Introduction
Misuse safeguards—technical interventions implemented by frontier AI developers to
prevent users eliciting harmful information or actions from AI systems—are likely to
become an increasingly important tool as AI systems become more capable. This
document provides a set of best practices and principles which can be used when
evaluating whether a set of safeguards is sufficiently reducing the risk of misuse from
model deployment.

We believe that clear problem statements and evaluations can drive progress on
safeguards, and that these principles can drive rigour and standardisation in how
safeguard evaluations are performed and reported on—internally within frontier AI
developers, to third parties such as external evaluators, and with government bodies like
us. To help with this process, we have also produced a Template for Evaluating Misuse
Safeguards of Frontier AI Systems, which provides a lightweight and actionable structure
in the form of specific questions to answer when assessing safeguards.

Our recommendations draw on our experience evaluating and red-teaming safeguards
of a wide range of frontier models in both pre- and post-deployment tests (e.g. Claude
3.5 Sonnet and our May update). However, we note that safeguards and safeguard
evaluations are a rapidly evolving field, and we intend to update this document in future.
We encourage frontier AI developers to use our framework and iterate with us in building
towards a structured and standardised assessment approach. Throughout this process,
we are excited to see safeguards strengthen as capabilities increase.

Scope: These principles focus on safeguards implemented by the frontier AI developer
with the goal of managing misuse risk from deployed frontier AI systems. This document
is agnostic to the specific kinds of misuse risks that safeguards are being designed to
mitigate. This document does not address mitigations to prevent risks not related to
misuse such as model theft, model bias, hallucinations, privacy compromises, loss of
control, or availability breakdowns.

Structure: The Principles take the form of a 5-step plan for assessing whether a set of
safeguards is sufficient. and provides recommendations and considerations for ensuring
the overall assessment is reliable. Our Template for Evaluating Misuse Safeguards of
Frontier AI Systems enables organisations to adopt these steps and implement the
recommendations we make.

https://www.aisi.gov.uk/work/principles-for-safeguard-evaluation
https://www.aisi.gov.uk/work/principles-for-safeguard-evaluation
https://www.aisi.gov.uk/work/pre-deployment-evaluation-of-anthropics-upgraded-claude-3-5-sonnet
https://www.aisi.gov.uk/work/pre-deployment-evaluation-of-anthropics-upgraded-claude-3-5-sonnet
https://www.aisi.gov.uk/work/advanced-ai-evaluations-may-update
https://www.aisi.gov.uk/work/principles-for-safeguard-evaluation
https://www.aisi.gov.uk/work/principles-for-safeguard-evaluation

Recommendation 1: Clearly State Safeguard
Requirements
It is difficult to assess safeguards without first clearly defining the
requirements the set of safeguards being used should satisfy. Our
first recommendation is to clearly outline these safeguard
requirements—statements that describe what risks safeguards
should mitigate against and for which threat actors and attack
scenarios (threat models), while clearly stating the assumptions
taken as given during testing. We expect that developers will draw
from internal and/or external threat modelling to develop their set
of safeguard requirements. It is recommended that these
requirements are designed and set as early as possible in the model
development lifecycle, ideally before safeguards have been
produced and evaluation of those safeguards has started.

As the scope of the assessment grows, the number of requirements may also increase;
to avoid unnecessarily onerous requirement documentation, individual requirements
can be formulated to address multiple actors and scenarios.

Each of the safeguard requirements frontier AI developers state should contain several
key components:

1. The unacceptable outcome: Describe the outcome that safeguards are required
to prevent in this requirement.

2. The threat actors and attack scenarios in scope: Identify and describe the
specific types of malicious actors and potential misuse scenarios that the
safeguards are designed to address. This could include cybercriminals, or
malicious insiders, as well as scenarios such as disinformation campaigns,
cyberattacks, or unauthorized access to sensitive information.

3. Any assumptions: Outline any underlying assumptions made when developing
and implementing the safeguards. This could include assumptions about the
threat landscape, the capabilities of potential attackers, or the operational
environment of the AI system.

For example, a safeguard requirement could take the following form:

▪ A malicious technical non-expert with a total budget of up to $1,000 and several
weeks on a specific operation is unable to extract high-quality information which
enables vulnerability exploitation and attack planning in a cyber-security domain.
This requirement covers the risk of model-enabled cyber-offence as we assume
that only technical non-experts with the stated budget would be uplifted by the
model’s capabilities.

▪ A malicious technical non-expert with a total budget of up to $1,000 and several
weeks on the specific operation is unable to extract high-quality information to
enable targeted or at-scale social engineering. This requirement covers the risk of
model-enabled social engineering as we assume that only technical non-experts
with the stated budget would be uplifted by the model’s capabilities.

Looking at the first safeguard requirement, we have the following components:
• Unacceptable outcome

o [a user can] extract high-quality information which enables vulnerability
exploitation and attack planning in a cyber-security domain.

• Threat actors and attack scenarios
o A malicious technical non-expert with a total budget of up to $1,000 and

several weeks on the specific operation, [...] in a cyber-security domain.
• Assumptions:

o This requirement covers the risk of model-enabled cyber-offence as we
assume that only technical non-experts with the stated budget would be
uplifted by the model’s capabilities.

Once the safeguard requirements are stated, we recommend designing the process that
will be used to decide whether the evidence gathered is sufficient to justify that the
requirements are satisfied; this process is then followed in Section 5. Detailing in
advance of gathering safeguards evidence (in section 3) how this decision will be made
ensures a rigorous and impartial assessment of safeguard robustness. A key part of this
process should be comparing the degree of confidence necessary for the safeguard to
be satisfied with the confidence produced by the available evidence. Some
requirements, like requirements on safeguards for mitigating higher-impact misuse risk,
may require higher confidence than those on safeguards for mitigating lower-impact
misuse risk.

As mentioned above, we expect many developers will draw on internal threat modelling
to produce the safeguard requirements. If not, they can consider consulting external
advice or best-practices on what safeguard requirements it would be beneficial to have.
These Principles are not concerned with how to choose the safeguard requirements, but
how to justify that developer’s safeguards meet those requirements.

Recommendation 2: Establish a Safeguards Plan
Once the safeguard requirements have been clearly stated, our
next recommendation is to describe the complete set of
safeguards they plan to use to satisfy the requirements. We have
found that detailing relevant information about the safeguards
being used makes it much easier to interpret safeguard evidence
and think of potential untested loopholes. However, we
acknowledge that some of this information may be sensitive, so
would likely be redacted from any public version of this template
produced by frontier AI developers.

We describe several common classes of safeguards we might
expect to see in a safeguards plan, but acknowledge that the field
is nascent and rapidly developing, so would expect to see new
safeguards in the future. We categorise safeguards by how they
intervene on the misuse risk of the AI system:

• System safeguards aim to ensure threat actors cannot access dangerous
capabilities of models, even if they can access the models themselves. Common
examples include:

o Refusal training: Fine-tuning models to refuse to answer harmful questions,
with supervised fine-tuning, reinforcement learning, deliberative alignment or
other techniques.

o Machine Unlearning: Adjusting models to remove dangerous knowledge or
capabilities.

o Input and output classifiers: Using models to classify inputs or outputs as
harmful and refuse to serve the user on those inputs.

• Access safeguards aim to ensure threat actors cannot access the model at all (even
though the model is accessible to some actors) and hence can't access the
dangerous capabilities. Common examples include:

o Monitoring for suspicious or malicious activity: Input and output classifiers
can also be used for longer-term monitoring for undesirable behaviour from
users, which can then inform access safeguards such as those listed below.

o Customer verification and vetting: Ensuring only verified and vetted
customers can use the AI system, to avoid threat actors accessing the system.
This can be thought of as an allow-list approach to access safeguards, and
could be used for general-access systems, or for more capable systems
which otherwise have fewer safeguards in place.

o Banning of suspicious or malicious accounts: Instead of allow-listing users,
maintain a deny-list of malicious users and block their access. This will require
some form of account verification to ensure threat actors cannot create new
accounts easily when previous accounts are blocked. Monitoring solutions
can identify users to add to the deny-list.

• Alongside the above types of safeguards, maintenance safeguards are tools and
processes that ensure existing system and access safeguards maintain their
effectiveness. Common examples include:

o Usage Monitoring systems: Tools and processes used to continuously
monitor the model's behaviour and usage patterns for signs of misuse.

o External Monitoring: Monitoring external sources (such as social media,
academic papers, etc.) for new vulnerabilities to either system or access
safeguards.

o Incident reporting: Procedures for reporting and documenting suspected
misuse incidents.

o Whistleblowing: Establishing channels for employees to report concerns
about potential misuse or vulnerabilities without fear of ill treatment or
retaliation.

o Vulnerability Disclosure Policies: Have instructions for how external
researchers or users can report vulnerabilities, and processes for handling
this vulnerabilities.

o Bug bounties: Bug bounty programs provide rewards to users who
responsibly discover and disclose potential vulnerabilities in the system. This
helps to identify and address new vulnerabilities before they are exploited.

o Rapid vulnerability remediation: Response plans for quickly addressing and
mitigating vulnerabilities discovered in the above systems. These could be
vulnerabilities in system safeguards or access safeguards.

o Rapid response to misuse incidents: Plans for mitigating potential harm if a
misuse attempt is successful, for example by alerting the relevant authorities.

Full details about the above measures may not be necessary to share with third parties.
Some information is still useful for ensuring evidence of safeguard sufficiency can be
interpreted correctly, for example:
1. Which safeguard requirements is the safeguard designed to contribute to satisfying?

o This makes it clear how to evaluate this safeguard, for example what threat
actors does it need to be robust to.

2. Have versions of this safeguard been used in previous system deployments?
o This is important to understand how much experience actors attacking the

system are likely to have with the safeguards being used
3. Have any methods for producing evidence been used to produce training or model

selection data for this safeguard?
o This is important to ensure that safeguards are not being overfit to specific

evaluation methodology which is then used to justify safeguards are
sufficiently robust.

We list additional questions in the Template.

In designing the safeguards plan, we recommend proactively avoiding the following
common failure modes:

1. Single points of failure: Implement multiple layers of safeguards (defence in
depth) to ensure that the compromise of a single measure does not lead to the
failure of the system as a whole.

2. Neglecting maintenance safeguards: Plans should include maintenance
safeguards so that access and control safeguards continue to be effective. Given
the rapid pace of change in AI technology, robust and concrete processes for
responding to new vulnerabilities should be put in place in advance of system
deployment.

3. Lack of comprehensiveness: Design safeguards to address all user interaction
types and deployment scenarios that could lead to safeguard requirements not
being met. For example:

1. If the system is deployed in different contexts, such as through third-party
applications, ensure that relevant safeguards are designed to be effective
in all these contexts.

2. If the system provides API access, ensure safeguards are designed to be
effective for this level of access. If APIs provide access to model fine-
tuning or other techniques of model adjustment beyond prompting,
safeguards need to be designed such that safeguard requirements are still
met with these additional APIs being available.

3. Consider including cases where individual queries may be benign, but the
outputs become harmful when combined.

Recommendation 3: Collect & Document Evidence of
Safeguard Sufficiency
Once the safeguard requirements have been stated (1) and
specific set of safeguards established (2), the next step is to
collect and document evidence to assess whether the safeguard
requirements are met. Gathering, collating and documenting
evidence to evaluate the effectiveness of implemented safeguards
allows for internal and external assessment of safety and security.

We recommend frontier AI developers should undertake the
following process for all evidence presented:

1. Define the form of evidence clearly: Provide a precise
description of the evidence, including its source and
methodology.

2. Document results: Present the outcomes of tests, experiments, or analyses in
detail. Describe whether there are error bars or confidence intervals on any
quantitative results or not.

3. List potential weaknesses of the evidence: Describe ways in which the
evidence may potentially be flawed. In particular, list any concerns regarding the
internal validity1 of the results, and any concerns regarding the external validity2,
particularly in applying the evidence to the relevant deployment settings and
threat actors in the safeguard requirements.

o Additionally, describe any potential biases or conflicts of interest in who is
gathering the evidence, signs of inadequate or surprising testing
conditions, or differences between the testing environment and real-world
deployment settings that may affect the validity of the evidence.

4. Document the process by which this evidence is presented to relevant
decision-makers. It is important to make clear how the people who are ultimately
deciding whether the safeguard requirements are satisfied interact with this
evidence, and whether they see it unmodified from the original.

When gathering evidence, the following practices help to enable developers to
sufficiently justify that the safeguard requirements are met:
• Multiple pieces of evidence per requirement: Consider gathering multiple pieces

of evidence for each safeguard requirement, to reduce the chance of a single error in
evidence collection resulting in an incorrect justification of the safeguard
requirement being satisfied.

• Diverse evidence: Consider making different pieces of evidence distinct and non-
overlapping, and gathered through different means, to gain higher confidence in the
satisfaction of the requirement. In particular:

o Avoid over-reliance on internal evaluations, red-teaming, and evaluations.

1 By internal validity we mean the extent to which a piece of evidence supports the immediate conclusion
drawn from it.
2 By external validity we mean the extent to which results can be taken to justify conclusions in other
contexts than the one the evidence was gathered in.

o Incorporate a variety of testing methodologies and external perspectives to
provide a more comprehensive view of safeguard effectiveness.

o Use third-party assessors or red-teamers where possible.
• Comprehensive evidence: Ensure some evidence applies to each deployment and

usage scenario covered by the safeguard requirements.
• Provide additional information and document denied information requests:

Should clarifying or additional information be requested during an assessment of the
evidence by a third party, provide that information or clearly document cases where
requests were denied or not fully completed.

Recommendations on specific types of evidence
Here we provide specific recommendations and best practice on common forms of
evidence that are likely to be used in supporting the satisfaction of safeguard
requirements.

Red-teaming based evidence
Red-teaming based evidence usually consists of internal or external teams of people
trying to subvert, attack or otherwise break safeguards. The success or failure of this “red
team” can then be used as indicative of how successful threat actors described in the
safeguard requirements would be at subverting safeguards. This practice has a long
history in traditional information security and is already a common form of evidence used
by frontier AI developers.

When gathering this evidence, we recommend considering the following best practices:

• Ensure that red-teaming occurs in realistic deployment scenarios: Some red
teaming efforts should be attacking the system as it will be deployed, to ensure
evidence is realistic and matches potential threat actors. Transferring the results
of red-teaming efforts from previous versions of the model or previous models
may not be sufficient. Any change between testing conditions and deployment
conditions should be clearly stated.

• Consider red-teaming safeguard components separately, as well as when
combined: Evaluate individual safeguards and system components
independently to identify specific vulnerabilities. This allows for better
understanding what components are load bearing, and what vulnerabilities may
emerge if certain safeguards are circumvented.

o Implement assumed breach scenarios: Red-teaming components
separately enables conducting tests that assume attackers have already
gained some level of access to the system, to identify potential cascading
failures.

• Provide commensurate resources for red teams: Provide red teams with
information, access, and/or resources that match or exceed those of potential
threat actors to ensure thorough testing. Note potential reasons for why the red
team may be at a disadvantage as compared to real-world attackers.

• Use third-party and independent red teams: Engage external safety and
security experts to provide an unbiased assessment of safeguards. In cases
where a red team is used which has been used to red team other safeguards, note

this clearly. If previous rounds of red-teaming with the same or similar red teams
have occurred, this may undermine the strength of red teaming findings. When
using external red teams, ensure they have sufficient time and access to produce
a thorough assessment of the robustness of the safeguard being red-teamed.
Providing limited access or using short duration exercises may also undermine
the strength of red teaming findings.

• Document the red team’s incentives: The motivations of the red team have a
strong impact on the effectiveness of a red-teaming exercise. We recommend
documenting these incentives, and aiming to ensure the red team are incentivised
to find vulnerabilities in the way that best evaluates the effectiveness of the
safeguards. For example, ensure red team members cannot technically fulfil their
role without finding vulnerabilities that are impactful.

• Avoid relying excessively on security through obscurity. Should a red team
struggle due to lack of knowledge as to the safeguard components, note clearly
why such information will remain protected in the future. We encourage
engagements with higher-information red teams, as relying on obscure
information is vulnerable to information leaks or lucky guesses which a red team
may fail to encounter. If such information becomes publicly known, it may be
necessary to disregard previously collected red teaming evidence. See further
discussion below.

Red-teaming can be used for evaluating a range of safeguards. It’s often used to evaluate
refusal training and real-time or asynchronous classifier/monitoring systems, but it
should also be used for any of the safeguards that are susceptible to adversarial attack,
provided system safety or security depends on the robustness of these safeguards. For
example: identity verification and account banning systems; systems that monitor for
suspicious user activity; and machine unlearning techniques.

Safeguard coverage evaluations
Coverage evaluations can be seen as complementary to other kinds of deeper
evaluations of safeguard effectiveness (like red-teaming). While many evaluations put in
a large amount of effort to find vulnerabilities in systems on a small set of specific inputs
or attack vectors, coverage evaluations aim to test whether the system behaves as
required (e.g. refuses) on the full range of potentially harmful inputs. Coverage
evaluations may be coupled with prompt-rephrasing and jailbreaking, although they will
often feature less effort per-input applied to find a vulnerability that other evaluations,
aiming for breadth rather than depth.

When developing comprehensiveness evaluations, we recommend considering the
following practices:

• Define specific domains of importance and corresponding desired
behaviour: Define what activities should the model not assist with, and based on
this how the model should behave on queries related to these activities (e.g. the
model should refuse). These activities and desired behaviours can then be used
as inputs and corresponding evaluations of outputs that should be satisfied.

• Use programmatic methods for generating broad coverage of behaviour: For
certain domains, it may be helpful to generate queries in a combinatorial way

based on combining a list of substances or activities with question templates that
in combination result in clearly harmful queries.

• Attempt some amount of vulnerability search for each input: When testing
whether the system performs the desired behaviour when given each query,
ensure that this behaviour is robust to applying some amount of effort.
Specifically, consider:

o Testing each query multiple times and with different rephrasings.
o Testing queries in combination with basic jailbreaks.
o Testing queries in combination with a seemingly legitimate justification for

accessing the information.
o Testing queries not just as part of single turn interactions, but also as part

of conversations/multi-turn interactions. Such multi-turn interactions may
involve eliciting different parts of information related to the query in
different turns.

Bug bounty program effectiveness
Bug bounty programs are programs where external users are rewarded (generally
financially) for successfully searching for techniques or strategies that successfully
subvert safeguards (“bugs”). They have been used in range of contexts including
traditional information security to incentivise users to report bugs to developers, hence
improving the safety of the system. They can also serve as a metric for how frequently
new bugs are found.

Vetted versions of bug bounty programs can also provide additional access to dedicated
safety and security researchers so that they can perform effective analysis on the
safeguards of the system without access safeguards making this analysis and problem
discovery more difficult.

When assembling evidence based on the effectiveness of a bug bounty program, we
recommend considering the following best practices:

• Ensure proper incentives: Implement reward structures that adequately
motivate researchers to identify and report vulnerabilities. If bugs are not being
reported, consider that a higher or different bounty may be necessary. Consider
that different types of participants may be incentivised by different rewards
(financial rewards, public recognition, opportunities to collaborate further).

• Establish clear scope and rules: Define the parameters of the bug bounty
program, including which systems or components are in scope and how
vulnerabilities should be reported. Make sure the setting in which bugs are found
is as similar to deployment as possible (if it is not just the deployment setting
itself). Note clearly any ways that a participant is more constrained than a relevant
threat actor, such as limitations in the types of attacks that can be submitted for
bounty.

• Make clear the plan for responding to reported bugs: Define a clear process for
responding to bugs reported through the bug bounty program, to ensure that any
bugs reported are fixed in an effective and timely fashion. Consider performing
mock bug response drills to test this process works effectively and improving it if
the drills demonstrate it is ineffective.

• Report participant information: Clearly state the total number and profile (such
as skill level) of participants. Note also whether participants have previously
engaged with the company, such as in prior red teaming arrangements which may
mean their profiles have been considered when designing defences.

• Extrapolate based on rate of bug reporting: Track the rate at which novel bugs
are being reported and their seriousness and use that to extrapolate how many
more remaining bugs are expected and how serious they are expected to be. If this
rate is above 0, especially for serious bugs, consider whether that invalidates any
safeguard requirements that rely on no novel vulnerabilities in safeguards being
discovered during deployment.

Security through obscurity
In this context, security through obscurity (STO) is the practice of obscuring or hiding
details of the set of safeguards being used in an effort to enhance the security and safety
of the system. If any of a developers’ safeguard requirements or assumptions rely on
STO, it is valuable to ensure that this defence through obscurity is also robust.
Specifically, consider:

• Red-teaming the obscurity of the set of safeguards being used: Using similar
practices as in standard red-teaming, assess how obscure the details of the
system are, and whether the red-team can uncover details of the set of
safeguards being used.

• Monitor external channels for signs of obscurity being broken: Once details
about safeguards are revealed, STO cannot be relied on without adjusting the
system to use qualitatively different safeguards. Hence, consider monitoring
whether details of the safeguards have been revealed publicly to aid continual
assessment of whether STO should be relied on for supporting the satisfaction of
the safeguard requirement.

• Reassess prior evidence if obscurity is broken or may be broken: Evidence
collected when assuming obscurity may be invalidated following suspected or
confirmed information release.

We caution against relying on STO for supporting the safeguard requirements or
assumptions. STO is fragile (if details are released, they cannot be hidden again); it is
difficult to assess whether it continues to hold (even with monitoring details of the
system could have been discovered but not posted publicly); and it is understudied in
the field of machine learning, making it difficult to provide reasonable estimates of how
effective it would be even if the first two issues were not present. Instead, we recommend
adopting a conservative standard: A set of safeguards is only considered sufficient if it
continues to be so even if detailed descriptions of the set of safeguards were public
knowledge. It may be prudent to limit the release of information, even if this obscurity is
not relied on for safeguard requirements.

Recommendation 4: Establish a Plan for Post-
Deployment Assessment
To maintain the effectiveness of safeguards over time, it is essential
to implement ongoing assessment procedures. We recommend
frontier AI developers assess whether the safeguard requirements
stated (and any assumptions underlying them) continue to hold
while the model is deployed. We call this post-deployment
assessment. To enable this, developers should have protocols in
place to respond to new evidence and triggers for running additional
post-deployment assessment.

Specifically, we recommend following these steps for producing a
post-deployment assessment plan:

1. Specify how frequently regular post-deployment assessment occurs: The
frequency of assessment could be based on the passage of time (e.g. every 6
months), based on increases in model capabilities (e.g. every 5% increase in
benchmark performance), or other metrics. We recommend choosing the
frequency of regular assessment such that new evidence that would demonstrate
the safeguard requirements are not met is unlikely to be missed.

2. Pre-specify what other conditions trigger a post-deployment assessment:
Beyond regularly scheduled post-deployment assessment, describe other forms
of information, either from internal or external sources, that would trigger an
additional post-deployment assessment. For example, if a new jailbreaking
attacking technique may be developed, and safeguards should be assessed to
see whether they continue to be robust to the new technique.

3. Pre-specify what would invalidate satisfaction of requirements: Pre-emptively
describe what information - either from internal sources, external sources, or
post-deployment assessment results – would demonstrate that the safeguard
requirements are no longer met or an assumption is no longer valid, and hence
the set of safeguards may need to be improved, or new evidence gathered. For
example, a company may specify a post-deployment bug bounty find-rate that
would change their view as to the accessibility of malicious model capabilities.

4. Describe the post-deployment assessment evaluations: Specify how
assessment will occur and ensure that these assessments are informed by new
and state-of-the-art research and techniques in safeguards development and
assessment, as well as any changes in the world that could influence the
safeguard requirements or assumptions. In particular, ensure this regular
assessment measures the evidence that has been pre-specified to invalidate
satisfaction of safeguard requirements.

5. Develop and implement response plans for new evidence: Develop a
framework for evaluating and acting upon new information. This information
could be from internal sources (e.g. post-deployment monitoring), external
sources (e.g. user reports, threat monitoring, or external research), and could
trigger either an additional post-deployment assessment, or an invalidation of the
safeguard requirements. These plans should include detail on the steps required
in each of these conditions.

• When developing these plans, have clearly defined roles and
responsibilities for all participants in the plan. Ensure all staff taking part
in the plan are appropriated trained and qualified for their roles, and that
they have the necessary powers and resources needed to carry out their
roles.

• For these response plans, consider running drills to test the response plan
and ensure it is effective at rapidly and effectively dealing with new
evidence, particularly if that evidence demonstrates the risk from the
model being deployed is higher than expected. If evidence includes new
successful attacks on the system which elicit previously inaccessible
dangerous capabilities, ensure the attack can be quickly fixed so that other
users cannot access it.

• Ensure that these response plans are sufficient to rapidly and effectively
react to and address potential increased risk, for example from newly
discovered vulnerabilities in the safeguards being used.

6. Include plans for changes in model safeguards or capabilities: Establish
processes for updating and re-evaluating safeguards as the model evolves or new
potential misuse scenarios are identified. For any new model deployment
scenario (e.g. different sets of safeguards, different usage limits or users, etc.),
developers should assess whether the existing evidence is sufficient to justify the
satisfaction of the safeguard requirements for this deployment. If not, developers
should gather sufficient new evidence to satisfy the requirements with the
required level of confidence prior to the new deployment.

7. Regularly review assessment mechanisms: Make a plan to regularly review and
update the assessment mechanisms themselves to ensure they remain relevant
and robust in light of emerging threats and technological advancements.

Recommendation 5: Justify Whether the Evidence and
Post-Deployment Assessments Plan are Sufficient
Once the evidence has been presented, and the plan for post-
deployment assessment of that evidence is in place, it is
important for frontier AI developers to explicitly decide and then
justify whether these are both sufficient. Make an overall
assessment of the level of confidence the set of evidence provides
for the satisfaction of each safeguard requirement, and assess
whether the plan for post-deployment assessments will ensure
awareness if any of the safeguard requirements are no longer
satisfied during model deployment. We encourage consulting
third parties to assess the sufficiency of your safeguards and post-
deployment assessment plan, and publishing (potentially
redacted) versions of the resulting report publicly.

For each safeguard requirement, we recommend the following
steps:

• Clearly state sufficiency of evidence: Argue why the evidence presented in (3)
combined with the post-deployment assessment plan in (4) together justify the
satisfaction of the requirement.

• Assess complementarity of evidence: Consider whether different pieces of
evidence provide complementary increases in confidence, or whether they are
not additive.

a. An example of a set of non-complementary evidence would be the results
of performing multiple evaluations that essentially probe the same
vulnerability or use very similar attack patterns, without providing new
insights into the model's robustness. These evaluations would be
redundant, and having run many similar evaluations would not provide
much additional evidence over a single evaluation.

b. An example of a complementary set of evidence would be results from
evaluations which red-team different parts of the AI system, measure
vulnerability to attack across different domains, or attack systems in
different styles.

• Adversarially assess the evidence: Conduct a critical review of the evaluation
methodology and collected evidence, identifying potential weaknesses or
oversights. This should include describing specific scenarios in which the
determination of safeguard sufficiency may be incorrect. Include this adversarial
assessment when seeking external assessments, and utilised third-party
assessment for an additional layer of review (as detailed below).

• Review and address any gaps in the set of evidence: After reviewing all the
evidence gathered, consider if there are any remaining gaps. Either address these
gaps with additional evidence or document the reason for these gaps. Justify why
these gaps do not invalidate the satisfaction of the safeguard requirements.

o Specifically, consider whether all deployment contexts and threat actors
specified in the safeguard requirement are covered by some evidence. If
there is evidence of effectiveness from strictly more permissive
deployment contexts or strictly more capable threat actors than those in
the requirement, that can be sufficient, as that can act as a lower bound
on effectiveness.

For the post-deployment assessment plan, assess whether the post-deployment
assessment plan is sufficient. For each requirement, decide whether the post-
deployment assessment plan will enable the continued satisfaction of that requirement,
or awareness that the requirements is no longer satisfied.

As mentioned above, there are additional benefits gained by consulting third-parties for
their input on the collected evidence and post-deployment assessment plans, and
publishing summaries or redacted versions of the reports for transparency:

• Collect third-party assessments: Engage independent experts and relevant
government authorities to review the sufficiency of the evidence and post-
deployment assessment procedures. Document how the evidence and report
was presented to them, whether there are any modifications or redactions made
from the original evidence, and their findings and any recommendations for
improvement.

o These third parties can help adversarially assess the evidence and plan
and help reduce the chance of blind spots in the existing assessment.

o If this third-party feedback and assessment uncovers severe limitations in
the existing set of evidence and post-deployment assessment plan, then
developers should aim to address those limitations before deploying the
model.

o If a third party requests information which is not fully provided to them,
note this clearly in documentation.

• Maintain transparency: Publish reports of safeguard evaluations and third-party
assessments to foster trust and enable public scrutiny of the process. These
reports can be summaries or redacted versions of internal documentation so as
to maintain sensitive information.

	Executive Summary
	Introduction
	Recommendation 1 : Clearl y State Safeguard Requirements
	Recommendation 2: Establish a Safeguards Plan
	Recommendation 3: Collect & Document Evidence of Safeguard Sufficiency
	Recommendations on specific types of evidence
	Red-teaming based evidence
	Safeguard coverage evaluations
	Bug bounty program effectiveness
	Security through obscurity

	Recommendation 4: Establish a Plan for Post-Deployment Assessment
	Recommendation 5: Justify Whether the Evidence and Post-Deployment Assessments Plan are Sufficient

