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1 Summary 

Generative artificial intelligence (AI) technologies can generate realistic images, text, audio, video, as well as 
multimodal content. This enables novel applications with promising potential for good while also posing new 
risks to trust, safety, transparency, and credibility in digital information and communications.  

This report examines the existing standards, tools, methods, and practices, as well as the potential 
development of further science-backed standards and techniques, for: authenticating content and tracking its 
provenance; labeling synthetic content, such as using watermarking; detecting synthetic content; preventing 
generative AI (GAI) from producing child sexual abuse material or producing non-consensual intimate imagery 
of real individuals (to include intimate digital depictions of the body or body parts of an identifiable 
individual); testing software used for the above purposes; and auditing and maintaining synthetic content.  

This report reflects public feedback and consultations with diverse stakeholders, including those who 
responded to a NIST Request for Information.  

Digital content transparency refers to the process of documenting and accessing information about the origins 
and history of digital content. Together, the approaches discussed below can help manage and reduce risks 
related to synthetic content by:  

● Recording and revealing the provenance of content, including its source and history of changes made 
to the content; 

● Providing tools to label and identify AI-generated content; and  

● Mitigating the production and dissemination of AI-generated child sexual abuse material and non-
consensual intimate imagery of real individuals.  

Digital content transparency provides a vehicle for individuals and organizations to access more information 
about the origins and history of content, which may contribute to trustworthiness but does not guarantee it, 
and in some cases may undermine it. While transparency can help identify when content is being 
misrepresented, it can also create a false sense of trust, such as when a piece of content appears legitimate 
based on technical measures but is then manipulated through non-technical means (e.g., taking a legitimate 
piece of content out of context). Ultimately, the impact of transparency depends on the effectiveness of the 
technical methods used and on how people access and interact with digital content. With respect to the latter, 
digital information literacy, as well as both formal and informal education, can impact how individuals 
perceive content.  

In this document, following Executive Order 14110, “synthetic content” refers to “information, such as images, 
videos, audio clips, and text, that has been significantly altered or generated by algorithms, including by AI.” 
Within this definition, the contents below most directly address image, video, audio, and text content that is 
generated or modified by AI systems in manner that meaningfully impacts their interpretation by humans.  

This report provides an overview of technical approaches for provenance data tracking and synthetic content 
detection with issues for consideration, along with a review of the current testing and evaluation for digital 
content transparency techniques. It should be noted that the efficacy of many of these technical approaches 
are not fully examined yet, and most of the approaches may be years away from widespread deployment on 
mobile devices. 

For selected techniques, the document identifies ongoing research and related research gaps. It also discusses 
technical mitigations for preventing and reducing the production and distribution of synthetic child sexual 
abuse material (CSAM) and non-consensual intimate images (NCII) and applies the concepts discussed to the 
AI lifecycle as outlined in the NIST AI Risk Management Framework, or AI RMF (NIST AI 100-1).  

https://www.nist.gov/artificial-intelligence/request-information-nists-assignments-under-executive-order-14110-safe
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf
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The technical approaches described in this report provide building blocks that can be used to improve trust in 
digital content and the institutions and individuals who produce and disseminate it by indicating where AI 
techniques have been used to generate or modify digital content. None of these techniques offer 
comprehensive solutions on their own; the value of any given technique is use-case and context-specific and 
relies on effective implementation and oversight. This report focuses on technical approaches; it may be 
important to consider normative, educational, regulatory, and market-based approaches not described in this 
report.  

Science-backed standards forged through global actions via international standards-setting bodies, several of 
which are mentioned in this report, can promote the adoption and interoperability necessary for these tools 
to have the desired impact. 

There is no perfect solution to solve the issue of public trust and harms stemming from digital content, but 
additional and improved approaches to synthetic content provenance, detection, labeling, and authentication 
techniques and processes are important capabilities to support trust between content producers, distributors, 
and the public.  

2 Harms and Risks from Synthetic Content  

Although much synthetic content is not inherently harmful, some synthetic content can accelerate and 
exacerbate pre-existing harms and negative impacts across the open information ecosystem, such as 
information integrity issues, synthetic CSAM, NCII, and fraud (including identity theft). 

To understand where and by whom interventions can be made to reduce risks of harm, it is helpful to 
understand the synthetic content pipeline, which stretches from creation to publication to consumption (see 
Figure 1). Each stage involves different AI actors. Most of the measures discussed in this report address the 
creation and consumption stages.  

Risks and harms of synthetic content can be influenced by a range of factors. These include the target 
audience for the content; the context in which content is used or misused; the sophistication of the actor 
creating and/or disseminating the content; and any social, economic, and health-related (including mental 
health) costs incurred in association with the creation and/or dissemination of the content. Harms also vary in 
scope: some are concentrated on particular individuals—such as when CSAM or NCII depict real individuals—
while other harms are diffuse across society, such as disinformation that affects a wide array of individuals 
who consume it. Which techniques are most effective in addressing synthetic content risks and harms will vary 
according to these factors, and fully addressing risks and harms may require measures aimed at these factors 
that go beyond the technical measures discussed in this report. 

Which techniques are most effective will also vary depending on who is using the techniques for what purpose 
they are using them, and how widely others are using them. Techniques for provenance data tracking, which 
record the origins and history of digital content, and for detecting such tracked data may be helpful to 
establish whether content is synthetic or authentic for broad audiences. This does not directly translate to 
trustworthiness, as authentic content can still be harmful or misleading, but these techniques may reduce 
some risks by providing greater transparency. Other synthetic content detection techniques, meanwhile, may 
be more suitable for use by analysts (e.g., in social media platforms or specialized civil society organizations) to 
determine whether specific content is AI-generated and what responses may be appropriate. For high-risk 
applications or applications that require high accuracy, which could include election security, 
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defense applications, CSAM/NCII investigations, and others, it will likely be helpful to take a defense-in-depth1 
approach. These considerations may need to be weighed against tools’ acceptance: in many cases, techniques 
will be more effective if they are adopted in a widespread and coordinated manner. 

Synthetic content can also carry risks for cybersecurity and fraud. In particular, synthetic images, voices, or 
video may be used to fool biometric authentication systems or to mislead human recipients into facilitating 
fraudulent transactions (e.g., via voice cloning). 

Efforts to address synthetic content harms and risks using digital content transparency are still relatively new. 
These techniques will continue to evolve, and a variety of technical and sociotechnical evaluations are needed 
to guide their implementation.  

This report addresses broadly applicable technical measures for risks of synthetic content. Further mitigations 
and controls tailored to more specific use cases and contexts, as well as for other risks of generative AI, are 
available in NIST’s guidelines for Managing Misuse Risk for Dual-Use Foundation Models Guidelines2 and the 
Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile. The latter also 
highlights twelve different categories of risk from generative AI in more detail. 

3 Digital Content Transparency Approaches, Issues, and Opportunities 

This section provides a landscape overview of computational tools for digital content transparency, including 
overviews of the state of the art, design goals and parameters, and additional considerations and tradeoffs for 
the various methods. It also notes opportunities for further research and development. 

Current tools can be broken down into the following categories, as shown in Figure 2: 

● Provenance data tracking (Section 3.1): Recording information about the origins and history for digital 
content, which can assist in determinations about authenticity. This category consists of techniques to 

 
1 Defense-in-depth refers to an information security strategy integrating people, technology, and operations capabilities to establish variable barriers 

across multiple layers and missions of the organization. 

2 Draft made available for public comment; final version to be published. 

Creation 

Synthetic content is 
produced (generated from 
scratch or modified from 
other content) by AI tools, 
either from generative 
model developers or from 
downstream tool 
developers, and by users 
using these systems. 
Content may be edited and 
modified by users after 
initial creation. 

Publication 

Synthetic content is 
uploaded and 
disseminated by users 
and publishers across 
platforms, websites, and 
other digital channels, 
or published or 
broadcast via non-digital 
channels such as print or 
radio. 

Consumption 

Audiences interact and 
engage with the 
synthetic content. This 
can include accessing and 
interpreting the content, 
reacting to or acting on 
it, and interpreting or 
acting on any 
accompanying 
disclosures or labels. 

Figure 1: The synthetic content pipeline spans creation, publication, and consumption stages, each with 
different actors and potential interventions. 

https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf
https://csrc.nist.gov/glossary/term/defense_in_depth
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.800-1.ipd.pdf
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record overt or covert digital watermarks or cryptographically signed or unsigned metadata. 
Provenance data tracking can be applied to record assertions about either synthetic or non-synthetic 
origins or modifications. 

● Synthetic content detection (Section 3.2): Techniques, methods, and tools used to classify whether a 
given piece of content is synthetic or not. Synthetic content detection may detect the existence of 
recorded provenance information, such as metadata or digital watermarks, or it may look for other 
characteristics to help determine whether content was generated, modified, or manipulated by AI. 

The techniques in Figure 2 overlap to some degree. For example, covert digital watermarks are useful only if 
they can be detected by watermark detectors, a form of synthetic content detection. The techniques can also 
be used in tandem to provide complementary benefits; it may be useful, for instance, to embed into an image 
a robust covert watermark, which is unlikely to be stripped as the image travels across platforms, and to 
attach signed metadata to provide further information for those who manage to receive it. Some kinds of 
watermarks can even be used to embed arbitrary metadata directly into the content (rather than as 
accompanying information). Despite these overlaps, the categories presented in Figure 2 are distinct enough 
that they can be discussed largely independently. 

 

Figure 2: Current computational methods for digital content transparency can be broken down into provenance data 
tracking and synthetic content detection, each with multiple subcategories. Provenance data tracking can be applied to 

both synthetic and non-synthetic content. 
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Figure 2 also highlights an important third category, namely normative, educational, regulatory, and market-
based approaches for enhancing awareness about content provenance and information integrity and 
incentivizing practices that promote information integrity. Technical methods for digital content transparency 
affect society only via the people and organizations who adopt or interact with them, so if these methods are 
to succeed in their goals, they may need to be accompanied by efforts that focus on people and institutions. 

Such approaches are generally out of scope for this report. However, Section 3.3 does briefly address how 
technical provenance artifacts discussed in this report can be provided or displayed to humans in a manner 
that is helpful and informative in practice.  

Techniques discussed in this section are sometimes referred to as content authentication. This report uses that 
term to refer not to a technical method or to all kinds of digital content transparency, but rather to the 
process of using provenance data tracking methods to determine that a piece of content is authentic. In other 
words, the term encompasses all provenance data tracking, provenance data detection, and subsequent 
labeling methods when they are applied to non-synthetic content to establish its authenticity. 

3.1 Provenance Data Tracking 

Provenance data tracking can help establish the authenticity, integrity, and credibility of digital content by 
recording information about the content’s origins and history. Current methods for provenance data tracking 
include digital watermarking and metadata recording.3 These methods vary in their implementation and their 
robustness across various types of content (images, text, audio, and video). 

Provenance data tracking methods can record that a given piece of content was generated or edited using an 
AI tool; they can also record that it was created or edited by some non-AI entity or tool (e.g., a camera). In 
either case, the presence of the data, particularly if it can be validated, can give the recipient some degree of 
confidence that the content emerged from the specified origins or history.  

3.1.1 Digital Watermarking  

Digital watermarking involves embedding information into content (image, text, audio, or video), typically 
while making it difficult to remove. The distinguishing characteristic of watermarks is that the information is 
encoded into the content itself via the pixels, words, etc., without using a separate channel (e.g., metadata 
fields) to convey the information. Examples of useful information that may be embedded in a digital 
watermark include content origins, ownership details, timestamps, and unique IDs. Such watermarking can 
assist in verifying the authenticity of the content or characteristics of its provenance, modifications, or 
conveyance. 

Digital watermarks have long been used to indicate content origins. One popular use case is the visual 
watermarks shown on stock photography and other image previews. Another long-standing use is to embed 
extra information about content ownership in broadcasts, as provided for by standards from the Advanced 
Television Systems Committee (ATSC; see Appendix A). 

A watermark may need to encode nothing more than its presence—e.g., to indicate that a given system 
generated the content. Some forms, however, can embed arbitrarily complex data. Further details on specific 
watermarking tools and use cases are given in Appendix B and Appendix C. 

 
3 It is also possible for generative AI services to store previous generations and confirm whether a given piece of content is close to something that was 

generated by the model. This could be considered another form of provenance data tracking, but there has not yet been extensive study of the idea, 
including of its potential effectiveness, scalability, or privacy implications, so discussion of this idea is left to future work. 

https://arxiv.org/pdf/2303.13408
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Watermarks for digital content have several key design parameters:4 

Overt or 
Covert 

Overt watermarks can be perceived directly by the senses of a person who receives 
the content (e.g., a semi-transparent logo affixed to an image or video). Covert 
watermarks are machine-readable watermarks involving subtle perturbations of the 
content that are hard for humans to detect. For example, a watermark can be 
embedded by altering the least significant bit (LSB) of some pixels in an image. A 
covert watermark must be detected by a watermark detector, which will have some 
nonzero probability of false positives and false negatives. A covert watermark’s 
effectiveness depends on how accurately detectors can distinguish when the 
watermark is present and extract any additional data it contains. 

Private or 
Public 

Watermarking techniques can be private or public based on the availability of the 
algorithms or cryptographic information needed to detect the watermark. A 
watermarking scheme is public if everything needed for detection is publicly 
available; it is private if only some privileged set of actors can detect the watermark. 

Reversible or 
Irreversible 

Reversible methods embed the watermark into the digital content in such a way that, 
given the extracted watermark data and/or other information used to extract it (e.g., 
a security key), the original unwatermarked content can be reconstructed. In 
irreversible methods, the semantic distortion caused by the watermarking process 
cannot easily be reversed even once the watermark is read.5 

 

Digital watermarks are most effective for provenance data tracking when they possess the following 
attributes: 

Accurately 
detectable 

If the content is unmodified, the watermark should be detectable with both a low 
false positive rate (detected when not present) and a low false negative rate (not 
detected when present). This should be true even for small pieces of content (e.g., 
short pieces of text) that offer limited opportunity for watermark information to be 
embedded. 

 
4 The watermarking literature also describes several design parameters that are less relevant to synthetic content: 

● Watermarking techniques can be more or less robust to modifications and secure against attacks. Fragile watermarking methods are 
designed to become invalid in the face of any changes to the content (e.g., for data integrity use cases), while robust methods are designed 
to withstand certain types of attacks or modifications. Consistent with “robust” and “secure” in the table below, deliberately fragile 
watermarks would not generally be helpful for distinguishing synthetic content, although they could help detect if content was modified (via 
AI or otherwise) since its creation. 

● Watermarking techniques can be blind or non-blind based on whether the original content is required for detecting the watermark. Blind 
watermarking methods do not require the original content for detection, while non-blind methods do. Non-blind methods are often used to 
allow the content creator to later demonstrate ownership or authorship. When determining whether a piece of content is synthetic or not, 
one will not generally have access to the un-watermarked content—and indeed, for some generative AI watermarks, there is no un-
watermarked original—so blind watermarks are more relevant for digital content transparency. 

5 Watermarking techniques that are applied to generative AI outputs from the beginning of the generation process cannot be reversible, as there is no 

original to revert to. 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844175
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Robust The watermark should remain detectable under various types of typical innocuous 
modifications such as compression, filtering, or cropping (for media content) or minor 
paraphrases or deletions (for text). Likewise, such modifications should not prevent 
extracting any additional data that is stored in the watermark. 

Secure The watermark should be secure against attempts by malicious users to remove or 
tamper with the watermark information, or to insert forged watermarks. 

Low 
distortion 

The watermark should not affect how a human would perceive the quality of the 
watermarked content compared to the original content or compared to what an AI 
model would generate if its output were not watermarked.6 In the context of 
generative AI, quality may also encompass adherence to the prompt. 

Sufficiently 
high-capacity 

The watermark should have sufficient capacity to embed the information needed for 
its intended purpose, such as information about the creator. The watermark may need 
only to encode its presence (a “zero-bit watermark”). If it encodes information beyond 
this, it may be human-readable information, such as text or logos, or machine-
readable information, such as a URL, AI model identifier, or digital signature. In 
principle, a sufficiently high-capacity watermark could embed arbitrary metadata, 
though this may sometimes be impractical given the tradeoffs of increased capacity 
noted in Section 3.1.2.2. 

Efficient The watermarking algorithms should be computationally efficient, allowing for fast 
and reliable embedding and detection/extraction of the watermark information. 

Minimally 
disruptive 

The watermarking process should be transparent to the user, meaning it should not 
require significant changes to processes for creating, distributing, maintaining, or 
using the content. 

 

3.1.1.1 Technical methods for covertly watermarking synthetic content7 

Methods for covert watermarking must choose some property of the content that can be subtly perturbed, 
such as some known portion of the content (e.g., particular pixels) or the statistical properties of the content 
(e.g., the prevalence of certain words in certain contexts). There must also be a systematic perturbation 
algorithm to manipulate the chosen property so that the watermark can easily be generated, and a detector 
can reliably recognize when it is present and when it is not. 

 
6 There may be circumstances where high distortion is desirable in a watermark, e.g., if a stock photo vendor watermarks an image preview to prevent 

use without payment. For synthetic content watermarks, however, this is rarely desirable. 

7 The literature also contains examples of methods for watermarking a model itself. Model watermarking is a different task setting: given either a given 

model’s weights or some number of its outputs, the goal is to determine whether the model is the same as, or a slightly altered version of, some known 
model. There is some overlap in techniques, but this report does not discuss techniques specifically designed for watermarking models, nor does it 
address how well any techniques work for that purpose. 

https://arxiv.org/abs/2311.04378
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Below are some examples of properties that can be perturbed, along with the applicable types of content and 
examples that leverage these properties. The “modalities” column indicates what modalities the technique 
could, in principle, be applied to, not where it has been empirically demonstrated. The final column lists risks 
and limitations that are unique or particularly salient to watermarking based on the relevant property; cross-
cutting limitations are discussed in the sections below. 

Property to perturb Modalities Examples 
Stage of 

application 
Distinctive risks and 
technical limitations 

Individual samples (e.g., 
pixels, audio samples): 
Predictably chosen pixels, 
audio samples, or tokens of 
text can be altered to embed a 
watermark. To minimize 
perceptual distortion, 
modifications can be limited to 
a small and relatively 
unimportant set of samples or 
portions of samples, such as 
the least significant bits (LSB) 
of image pixels. 

Image, 
audio, 
video, text 

LSB-based 
watermarking 
(image), 
EasyMark 
(text), lexical 
substitution 
(text) 

Post-
generation  

Limited robustness 
and security (can be 
removed by, e.g., 
compression, 
cropping, filtering, 
scaling, or simple 
find/replace); 
perceptible 
distortions in the 
content; distortion 
and capacity may 
depend on the host 
content (e.g., texture 
of images) 
 
 
 

Frequency coefficients: Every 
piece of content that consists 
of samples laid out in time 
and/or space can be re-
represented in terms of spatial 
or temporal frequencies 
instead of individual samples. 
The balance between some of 
these frequencies can be 
perturbed with minimal impact 
on human perception, much as 
JPEG compression discards 
some spatial frequencies from 
images with little impact. 

Image, 
audio, 
video 

Discrete 
Cosine 
Transform 
watermark 
(image), 
Discrete 
Fourier 
Transform 
watermark 
(audio) 

Post-
generation  

Vulnerable to 
geometric attacks 
(cropping, rotation, 
and in some cases 
scaling); may require 
substantial 
computing resources 
or processing time to 
run 

Initial noise for diffusion 
models: Many recent GAI 
models are “diffusion models.” 
These models start from a full 
output consisting of random 

Image, 
video, 
possibly 
audio and 
text 

Tree ring 
watermark 
(image) 

During 
generation 

Limited capacity; 
applicable primarily 
in a private setting 
(detecting the 
watermark requires 

https://ieeexplore.ieee.org/abstract/document/5735066
https://ieeexplore.ieee.org/abstract/document/5735066
https://arxiv.org/abs/2310.08920
https://arxiv.org/pdf/2112.07873
https://arxiv.org/pdf/2112.07873
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://arxiv.org/abs/2305.20030
https://arxiv.org/abs/2305.20030
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noise, then iteratively refine 
the noise into an output 
matching the prompt. The 
initial noise output can embed 
a predefined pattern, which 
can later be recovered by 
someone in possession of the 
model. 

access to the model 
and possibly a 
security key); may be 
complex to apply to 
some modalities 
(demonstrated only 
for images) 

Space of possible outputs: 
Models can be constrained to 
forbid outputs that contain 
certain configurations of pixels 
or samples, with the forbidden 
configurations differing 
imperceptibly from permitted 
ones. Constraints can be set up 
so that any model output falls 
within the permitted set of 
outputs, but outputs that have 
not been carefully constructed 
will be unlikely to do so. The 
watermark is present if the 
content falls within the 
permitted set. 

Image, 
video, text, 
possibly 
audio 

Mirror 
diffusion 
models 
(image), 
SemStamp 
(text) 

During 
generation or 
post-
generation 

Limited capacity (can 
convey only 
watermark 
presence); may not 
scale well to larger 
outputs (e.g., high-
resolution images); 
adding constraints to 
forbid more outputs 
reduces the chances 
of false watermark 
detection but 
increases distortion; 
robustness and 
security are unclear; 
may be complex to 
apply to some 
modalities 
(demonstrated only 
for images) 

Next token probabilities: 
Large language models 
typically generate text one 
“token” (or sub-word chunk) at 
a time. The probabilities of 
different tokens being chosen 
at a given point in the text can 
be modified to embed 
information. 

Text Red/green 
LLM 
watermark 
(text), 
distortion-free 
LLM 
watermark 
(text), 
semantic-
invariant 
watermark 
(text) 

During 
generation 

Some versions may 
degrade text quality 

 

https://openreview.net/pdf?id=XPWEtXzlLy
https://openreview.net/pdf?id=XPWEtXzlLy
https://openreview.net/pdf?id=XPWEtXzlLy
https://arxiv.org/pdf/2310.03991
https://arxiv.org/pdf/2301.10226.pdf
https://arxiv.org/pdf/2301.10226.pdf
https://arxiv.org/pdf/2301.10226.pdf
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://arxiv.org/pdf/2310.06356
https://arxiv.org/pdf/2310.06356
https://arxiv.org/pdf/2310.06356
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
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For many of these properties, a variety of techniques can be used to systematically perturb them into a 
watermark. Example methods (which may be used together) include: 

Perturbation method  Properties method is 
applicable to 

Examples Distinctive risks and 
technical limitations 

Direct replacement: If 
what is being perturbed 
is standalone pieces of 
the output (e.g., pixels 
or words), pieces of 
output data can be 
replaced directly with 
the watermark data. 

Individual samples, frequency 
coefficients.  

For example, the LSBs of 
image pixels can be replaced 
with watermark information. 
(This would not work for 
methods that perturb the 
generation process, as that 
process is not directly encoded 
in the output.) 

For text, modifications can 
attempt to preserve semantics 
(e.g., by substituting 
synonyms). 

LSB-based 
watermarking 
(image), 
Discrete 
Cosine 
Transform 
watermark 
(image), 
Discrete 
Fourier 
Transform 
watermark 
(audio) 

May have higher 
distortion than other 
methods; tends to be 
less robust and secure 
(easy to overwrite) 

Hashing or encryption: 
A cryptographic or 
perceptual hash 
function can be used to 
generate a “hash 
value,” a pseudo-
random number, that 
determines what 
perturbations are 
performed. To enable 
private operation, an 
encryption cipher with 
a key known only to the 
model operator can be 
used as the hash 
function. 

Individual samples, frequency 
coefficients, next token 
probabilities 

For audiovisual content, a 
hash of the original image, or 
data derived from it, can be 
embedded via direct encoding. 
Hashing can also be used for 
text watermarking: at each 
step, the hash value is used to 
designate “red” and “green” 
lists of tokens, and then the 
model preferentially selects 
the next token from the green 
list in a covert but statistically 
detectable way. 

Robust 
hashing for 
visual 
watermarking 
(image), 
Red/Green 
LLM 
watermarking 
(text) 

Fragility of hashes and 
ciphers to small changes 
can reduce robustness 
and security; can be 
complex to implement; 
can be computationally 
intensive 

Randomness: A 
randomly selected key 
can be used to 
determine what 
perturbations are 
performed (e.g., how 
much a text token’s 
probability is boosted 

Individual samples, frequency 
coefficients, space of possible 
outputs, next token 
probabilities 

Mirror 
diffusion 
models 
(image), 
distortion-free 
LLM 
watermark 
(text) 

Watermark detector 
must have access to the 
key, which normally 
implies private 
operation (public 
release of the key could 
allow anyone to 
reproduce the 

https://ieeexplore.ieee.org/abstract/document/5735066
https://ieeexplore.ieee.org/abstract/document/5735066
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0020025519310503
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://www.sciencedirect.com/science/article/pii/S0003682X20307568
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844203&tag=1
https://arxiv.org/pdf/2301.10226.pdf
https://arxiv.org/pdf/2301.10226.pdf
https://arxiv.org/pdf/2301.10226.pdf
https://openreview.net/pdf?id=XPWEtXzlLy
https://openreview.net/pdf?id=XPWEtXzlLy
https://openreview.net/pdf?id=XPWEtXzlLy
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
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or decreased, or what 
pixel configurations are 
deemed forbidden from 
watermarked outputs). 

randomized 
perturbations and thus 
potentially apply the 
watermark) 

Machine learning: A 
machine learning 
system can be trained 
to perturb a piece of 
content in a way that is 
reliably detectable. 
Usually, a matching 
machine learning-based 
detector must also be 
trained. Unlike direct 
replacement, which 
overwrites predictable 
samples according to 
some human-defined 
rule, this technique 
creates a pattern in the 
samples that may be 
opaque to humans and 
may not assume pre-
existing content to 
overwrite portions of. 

Any property that can be 
perturbed 

Stable 
Signature 
(image), 
StegaStamp 
(image), 
WavMark 
(audio), 
Remark-LLM 
(text), SynthID 
(images, 
audio, video)8 

Computationally 
intensive; may make 
detection less 
explainable and 
therefore harder for 
some users to trust; 
performance may 
degrade for data 
outside the training 
distribution 

 

Watermarking methods are more thoroughly developed for images than for other modalities. They have also 
been well-studied for text, although text is regarded as significantly more difficult to watermark: it offers a 
much smaller surface to embed the watermark than visual or audio content; it is much more sensitive to even 
small alterations; and it is relatively easy to edit in a way that dilutes the watermark. 

3.1.1.2 Technical tradeoffs for watermarking 

Detection accuracy, robustness, and security vs. watermark capacity 

Any given mechanism for watermarking is essentially an information channel with some channel capacity. The 
channel may corrupt the watermark information via “noise” such as file corruption, benign edits, or 
adversarial manipulation. As in other contexts, the impact of channel noise can be reduced by encoding 
watermark data with more redundancy, which allows detecting and correcting more channel-induced errors 
and thus improves detection accuracy, robustness, and security. For example, encoding the same watermark 
data into many different sets of image frequency coefficients would make it harder to erase. However, such 
redundancy uses up channel capacity—i.e., given a limited budget of perturbations to perform, a 

 
8 The name SynthID is also used for a text watermarking scheme, although that scheme appears to be similar to other text watermarking schemes that 

are not based on machine learning 

https://arxiv.org/abs/2303.15435
https://arxiv.org/abs/2303.15435
https://arxiv.org/abs/1904.05343
https://arxiv.org/abs/2308.12770v3
https://arxiv.org/pdf/2310.12362
https://deepmind.google/technologies/synthid/
https://arxiv.org/pdf/2310.12362
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watermarking scheme that increases accuracy, robustness, and security by encoding information more 
redundantly will have lower capacity.  

This tradeoff does not apply to methods for improving robustness and security that do not rely on increasing 
redundancy. For example, information can be encoded via alternate representations of an image that make 
the watermarks intrinsically more robust to specific types of edits, such as rotation. 

For text, most proposed watermarking methods are zero-bit—i.e., they convey no information beyond the 
presence of the watermark—making this tradeoff less relevant. However, there is some initial research on 
multi-bit schemes based on error-correcting codes. 

Channel capacity vs. distortion 

For many kinds of watermarks, it is possible to modulate how extensively the content is perturbed. For 
example, an overt visual watermark can be applied across a wider swath of an image, or more frequency 
coefficients in an audio file can be overwritten. Increasing the extent of perturbation offers greater channel 
capacity, which, as noted above, can be used to increase either the watermark’s capacity or its detection 
accuracy, robustness, and security. However, this typically comes at the cost of increasing distortion—e.g., 
visually disrupting more of the image or distorting more frequencies that are perceptually salient to humans. 

3.1.1.3 Robustness and security of watermarking 

Ease of removal (“scrubbing”) 

A major issue for watermarks is robustness and security in the face of benign edits or adversarial attempts to 
remove the watermark. Overt watermarks applied to small portions of a piece of content can easily be edited 
out, sometimes even by accident, and it is often similarly straightforward to deliberately remove covert 
watermarks that use direct replacement (e.g., to remove an image watermark that overwrites predictably 
placed bits, one can simply overwrite those same bits again).  

Many watermarks, such as those that use machine learning or that perturb token probabilities or diffusion 
models’ noise patterns, are designed to distribute information throughout the content, making them more 
robust to modification or attempted removal. In these schemes, common edits to content may slightly reduce 
the detector’s confidence but still typically leave the content clearly watermarked. Nonetheless, most current 
watermarking schemes have been consistently found vulnerable to removal: 

● Images: Researchers have demonstrated that for a given image watermarking scheme, a dedicated AI 
system can be trained using a dataset of watermarked images to strip out the watermark even 
without knowing anything about the watermarking scheme used. Researchers have also theoretically 
proven and empirically confirmed (in multiple studies) that for any conceivable image watermarking 
scheme that modifies an image but hews close to the original pixels, the watermark can reliably be 
removed by adding noise to the image to destroy the watermark, then denoising the image to 
reconstruct the unwatermarked image. The mathematical proof applies only where the watermarking 
tries to retain fidelity to some unwatermarked version of the image by limiting pixel-level divergence. 
Some approaches that build the watermark into the entire generation process (e.g., tree ring 
watermarks) or that operate on non-pixel-based representations of the image (e.g., ZoDiac) may thus 
be more secure, although even tree ring watermarks have been empirically found to be removable 
given either sufficient access to the watermark detector or a large dataset of watermarked images. 

● Text: Text watermarks generally cannot be embedded or detected reliably when the text has low 
entropy, i.e., where there are few possible plausible responses to the prompt or continuations of the 

https://ieeexplore.ieee.org/document/918569
https://arxiv.org/pdf/2401.16820
https://www.eurasip.org/Proceedings/Eusipco/Eusipco2018/papers/1570438020.pdf
https://arxiv.org/pdf/2306.01953
https://arxiv.org/pdf/2306.01953
https://arxiv.org/pdf/2310.00076
https://dl.acm.org/doi/pdf/10.1145/3576915.3623189
https://arxiv.org/abs/2305.20030
https://arxiv.org/abs/2305.20030
https://arxiv.org/pdf/2401.04247
https://arxiv.org/pdf/2310.00076
https://arxiv.org/pdf/2301.10226
https://arxiv.org/pdf/2301.10226
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text. To take the extreme case, it would be hard to distinguish whether the canonical continuation of 
“1 + 1 =” was generated by GAI.  

When there are more options for high-quality text, the watermark can be more easily embedded and 
detected, but higher entropy also allows paraphrasing. By having a separate non-watermarked model 
paraphrase the original watermarked output, it is often possible to remove a text watermark with only 
minor degradation of text quality. Paraphrasing is especially effective when applied recursively to the 
output of the paraphraser, at the cost of more degradation. For short texts of about 225 words, 
recursive paraphrasing can reduce detection rates to 20%. A longer text, however, offers a larger 
information channel, allowing for more redundancy in the watermark signal, and thus greater 
robustness and security. In practical settings, paraphrasing has been found to substantially reduce 
watermark detection accuracy for short texts but to reduce it only slightly for longer texts (beyond 
about 400 words). 

If an adversary has information about what tokens the watermark prefers to output in which contexts 
(see spoofing subsection below), paraphrasing can be more targeted, deliberately substituting words 
the watermark would preferentially avoid. This method can remove watermarks even from longer 
texts. 

Much like for images, multiple theoretical results have been proven to show that any text 
watermarking scheme can, in principle, be defeated by adversarial modifications. These mathematical 
proofs rely on varying assumptions about the adversary’s abilities (e.g., their computational resources 
or their ability to modify the text while preserving quality), what constitutes successful watermark 
removal, and how the user can constrain the model’s output. Accordingly, there may be circumstances 
where the proofs do not hold in practice and text watermarking can be secure. It has also been proven 
mathematically that even if paraphrasing has nearly stripped a watermark or other indications of 
synthetic origin, a detector’s ability to correctly classify text from a given source as synthetic improves 
exponentially with the number of independent samples of text. Accordingly, it should theoretically 
remain possible to distinguish an AI source if enough samples can be obtained. 

Most text watermarks perturb the probabilities for each next token based on multiple preceding 
words. Thus, these watermarks can be removed by asking the model to pepper an irrelevant word (or 
emoji) throughout the generation and then stripping out the extra words so that each probability 
adjustment no longer corresponds to the preceding text. 

● Audio and video: Watermark removal for these modalities has not been as thoroughly studied. Some 
initial research suggests that audio watermarks are robust to types of perturbations they have been 
trained on, but much less robust against other distortions and not secure against adversarial 
perturbation. 

Adversarial attacks to remove watermarks generally require some effort and/or computational power. The 
extent to which this would pose a barrier to malign actors remains an open question. 

Forgery (“spoofing”) 

Malicious actors may also try to forge, or “spoof,” a watermark, embedding a falsified signal about the history 
of the content. Spoofing could undermine watermarks’ usefulness: if a substantial amount of non-
watermarked content registers as watermarked or if the information encoded in a watermark is often falsified 
data, users may come to disregard the watermarks as a meaningful signal about the origins and history of the 
content. Furthermore, if a watermark associated with a particular content creator or tool appears on malicious 
content from other sources—e.g., if CSAM images are falsely attributed to a generative model—that could 

https://arxiv.org/pdf/2303.11156
https://arxiv.org/pdf/2306.04634
https://arxiv.org/pdf/2403.14719
https://arxiv.org/pdf/2311.04378
https://arxiv.org/pdf/2310.08920
https://proceedings.mlr.press/v247/christ24a/christ24a.pdf
https://arxiv.org/pdf/2304.04736
https://arxiv.org/abs/2301.10226
https://x.com/goodside/status/1610682909647671306
https://arxiv.org/pdf/2406.06979v1
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pose reputational or legal risks to the model creator and unduly reduce trust in the technology. Spoofing can 
even facilitate watermark removal. 

The state of spoofing techniques varies by modality: 

● Images: Spoofing of watermark presence has been demonstrated empirically for a wide variety of GAI 
watermarks, reducing detector performance by around 5-20% depending on the watermarking 
method. 

● Text: For many watermarks that perturb token probabilities, an attacker can use careful prompting to 
extract an imperfect version of the perturbation rules, albeit somewhat inefficiently. For some 
watermarks, researchers showed that an attacker could use their own non-watermarked model to 
generate text that detectors classify 80% of the time as bearing some other model’s watermark. Other 
spoofing attacks have shown similar results. On its own, this may not constitute a major security risk if 
the only desire is to distinguish synthetic content irrespective of what model created it. However, it 
still raises reputation and trust issues, and multiple studies have shown that the ability to spoof a text 
watermark can facilitate watermark removal. Robust text watermarks are also inherently vulnerable 
to “piggyback spoofing attacks,” in which small but highly impactful edits (e.g., to insert toxic 
language) are made to a watermarked LLM output, which then still appears watermarked. 

● Audio and video: Watermark spoofing for these modalities has not been as thoroughly studied. Some 
initial research indicates that audio watermarks are robust against several kinds of spoofing, but less 
so when the attacker has access to the watermarking model. 

Adding cryptographic authentication to data embedded in high-capacity watermarks could hinder spoofing. 
This solution would raise some of the digital identity issues laid out in Section 3.1.2.5 regarding metadata 
recording, as well as the technical tradeoffs regarding capacity noted in Section 3.1.2.2. 

Preventing watermarks from being added 

Most watermarking techniques involve software that must be run either after an output is generated or as an 
additional set of operations during the generation process. The watermarking behavior is not built into the 
model itself. Accordingly, if someone has access to the source code used to run the model, they can modify 
that source code to disable watermarking; they do not typically need to retrain the model. In cases where the 
generative model itself has been trained to watermark, it may be possible to remove that behavior with 
limited additional training. 

3.1.1.4 Scale considerations for watermarking 

Many covert watermarking methods or protocols rely on unique, method-specific detectors. If AI model 
developers create their own unique watermarking schemes, or if they use unique non-public settings for a 
common scheme, users will have to use a different detection service for each developer to check whether a 
piece of content was created by that developer’s generative AI tools, which can be inefficient and increase the 
burden on the user. 

Scaling is particularly difficult for private watermarking schemes, where the detection algorithms, keys, or 
machine learning models necessary for detection are kept private. In such a setting, the entity holding the 
detection tools must be trusted and may become a bottleneck. Scaling is easier with public watermarks, where 
the detection algorithms and any necessary keys or models are widely shared. In addition to allowing a 
proliferation of detection tools, a public watermark would allow for services that host multiple detectors, 
streamlining detection. However, a public watermark could also allow malicious actors to spoof the 
watermark or to sidestep watermark generation by manipulating or repeatedly generating content to find an 

https://arxiv.org/pdf/2310.00076
https://arxiv.org/pdf/2403.14719
https://files.sri.inf.ethz.ch/website/papers/jovanovic2024watermarkstealing.pdf
https://arxiv.org/pdf/2303.11156
https://arxiv.org/pdf/2403.14719
https://files.sri.inf.ethz.ch/website/papers/jovanovic2024watermarkstealing.pdf
https://arxiv.org/pdf/2402.16187
https://arxiv.org/pdf/2406.06979v1
https://www.brookings.edu/articles/detecting-ai-fingerprints-a-guide-to-watermarking-and-beyond/
https://arxiv.org/pdf/2402.16187
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output that can fool the detector. Detection tools that are open source or otherwise not subject to rate 
limiting may be particularly susceptible to such an attack, as the adversary may find it more difficult to check 
repeatedly if their latest generation has successfully evaded the detector. 

The computational cost of detecting more complex forms of watermarks may also pose a barrier to scaling, 
particularly if users need to run detectors on their own hardware. 

Finally, there is an educational barrier that must be addressed: users need to understand how to use 
watermark detectors and interpret the results.  

3.1.1.5 Privacy considerations for watermarking 

Digital watermarks that are not zero-bit—i.e., that have some capacity to carry additional data—could leak 
sensitive information, especially if a tool that applies the watermark embeds or reveals information about the 
tool’s user without that user’s knowledge. Covert watermarks raise particularly salient concerns: unlike 
metadata, which is often stripped when content is disseminated, covert watermarks are designed to be 
persistent, and unlike overt watermarks, their presence is not necessarily apparent to users. Accordingly, 
covert watermarks that embed any form of sensitive information may make privacy controls more difficult. 

Opportunities for Further Development 

Future watermarking research might fruitfully address the following topics, among others: 

● Further theoretical analysis of what kinds of watermarking can be secure under what 
circumstances, as well as empirical analysis of when the assumptions of theoretical proofs 
hold in practice. 

● The detection accuracy, security, and robustness properties of video and audio 
watermarks, including how existing results regarding images translate to video and audio if 
similar techniques are applied. This could include developing modified techniques for video 
and audio where needed. 

● Empirical investigation of how both benign and malicious users interact with watermarks, 
including when and to what extent they attempt to remove or spoof watermarks and how 
often they succeed in practice. 

● New watermarking techniques, which could come from identifying new characteristics to 
perturb, new ways of systematically perturbing them, or new ways of combining these 
elements with each other and with content modalities. 

● Methods to modify model weights such that model outputs are intrinsically watermarked 
without requiring additional software processes.9 

● Techniques to make watermarks that are as scalable as public watermarks but with the 
security benefits of private watermarks  

● Methods to increase the capacity of text watermarks and other watermarks applied at 
generation time (e.g., tree ring watermarks), which could allow communicating, e.g., model 
identifiers or other metadata. 

3.1.2 Metadata Recording 

Metadata recording is a second type of provenance data tracking technique in which descriptive information is 
associated with a piece of content. Provenance metadata may indicate the content’s origin, time and date of 

 
9 Some methods have been explored for “training time watermarking,” in which the training data is modified, but the technique is mainly used for 

intellectual property protection and has significant limitations. 

https://arxiv.org/pdf/2312.07913v2
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creation, author, ownership, location of creation, editing history, or other details. Metadata, especially 
cryptographically signed metadata (see Section 3.1.2.2), can contribute to content transparency by explicitly 
describing the origins of the content, either by indicating synthetic origins or by asserting authenticity. 

Provenance metadata is typically packaged with the data it describes such that they travel together 
(“embedded metadata”). For instance, many image, video, audio, and document file formats have 
standardized ways of storing certain pieces of metadata as part of the file. Alternatively, metadata can be 
stored in an external repository and linked to the content via some form of identifier. Metadata stored in the 
same file is more straightforward to use and access, and it can be easier to keep accurate and up to date as 
the content is changed. However, anyone copying or editing the file can then manipulate or falsify the 
metadata in the versions they create and distribute. Metadata recorded within a file can similarly be stripped 
altogether, as it often is when files are shared (e.g., via social media platforms). Metadata may be stripped to 
deceive recipients of the content about its provenance or for benign reasons such as privacy protection. 

Metadata can be associated with text. However, this is easiest to do when the text is part of a document 
stored in a structured file format such as PDF or Office Open XML. (Even plain text files will typically have 
minimal operating system-level metadata such as modification timestamps.) It is not generally possible to 
have metadata travel with raw text as the text is copied across documents or applications. Metadata could 
potentially be associated with raw text via external repositories or embedded as a pattern in the text itself via 
sufficiently high-capacity watermarks (see Section 3.1.1). 

In principle, provenance metadata could reflect the entire history of creation and editing for a piece of 
content, and tools for interacting with content could make that history available. For example, metadata 
attached to an AI-generated image could attest to its synthetic origins and its time of creation, as well as any 
information the creator wished to include about themselves or the model that generated the image. As 
significant changes or edits are made to the image (or copies of it), those changes could be noted in metadata 
by the editing tools. Image viewers or social media platforms could then make the metadata available to users 
interacting with the image. In practice, however, such an ecosystem would be challenging to implement and 
scale: it would require tools and users to opt into a shared framework for provenance metadata, to use that 
framework consistently and reliably, and to overcome the issues and tradeoffs described below.  

It is also difficult to make sure recorded metadata is accurate; this is typically not verifiable even by 
cryptographic means. The most that can be established through signed metadata is that the signer claims the 
metadata is accurate; the signer may still be incorrect, or the metadata may not perfectly reflect the full 
provenance (e.g., an image signed by a camera may still have been modified by on-camera AI). 

3.1.2.1 Linking Content to External Metadata 

If metadata is stored in an external repository, a user will only be able to make use of or update that metadata 
if they can locate the metadata. 

One way to link content with external metadata is via hashes. Hashes, or digital fingerprints, are identifiers 
that can be predictably generated from the content itself. When a user wishes to find canonical metadata for a 
piece of content (including if they do not find metadata attached to the content or distrust the metadata they 
find), they can compute the hash and look it up in a trusted repository of metadata. Assuming someone 
previously saved canonical metadata in the repository under that hash, the user can recover or update the 

https://blogs.loc.gov/thesignal/2013/04/social-media-networks-stripping-data-from-your-digital-photos/
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metadata using just the locally computed hash without having to reveal or repeatedly send copies of the 
content.10 

Hashing algorithms can be made extremely sensitive to even small changes in the content (as in, e.g., 
checksums and cryptographic hashes). If such hashes are used to link content to metadata, a lookup will not 
retrieve metadata for content that was modified in any way. An alternative is “perceptual hashing,” which 
aims to generate similar or identical hashes for similar pieces of content. The International Standard Content 
Code is one example: it uses several different perceptual hashing algorithms to generate a digital fingerprint 
for a media file that is designed to remain similar even in the face of changes in compression, cropping, and 
other modifications. 

Another way to link content with external metadata is via content identifiers that are embedded in the 
content as watermarks (see Section 3.1.1). The same identifier that is embedded in the content would be used 
as a lookup key in a trusted metadata repository. This method requires a watermarking scheme with enough 
capacity to encode the identifier. 

3.1.2.2 Authenticating Metadata through Cryptography 

Metadata on its own is neither tamper-evident nor reliably attributable. Some degree of tamper-evidence can 
be achieved via a fingerprint of the content and metadata, typically a cryptographic hash or checksum. The 
fingerprint can be appended as additional metadata. However, if the content or metadata is modified, it is 
straightforward to simply recompute the fingerprint and overwrite that piece of metadata. 

A more robust solution is digital signatures. A cryptographic or digital signature is “an electronic analogue of a 
written signature that provides assurance that the claimed signatory signed, and the information was not 
modified after signature generation.” A digital signature can be computed for a given piece of content and its 
associated metadata. A recipient can then have some confidence that the signer wished to associate the 
metadata with the content and that neither the content nor the metadata has been tampered with since. 

A digital signature algorithm includes a signature generation process and a signature verification process. A 
signatory uses the generation process to create a digital signature on a piece of data via a private key, which is 
kept secret. The verifier then uses the verification process via a public key that corresponds to the private key 
to verify that the signature is valid and matches the allegedly signed data. 

A signature cannot verify that the metadata is accurate; on a technical level, it merely serves a notarization 
function, indicating that the signer attested to the existence of the metadata at a given time (assuming the 
clock used for signing was set accurately). Additional inferences, such as that the signer is confident in the 
metadata, would have to rely on social conventions—e.g., that signers sign only after validating the 
metadata—and on trust in the signer to adhere to those conventions. 

Metadata could be signed in the name of the hardware (e.g., cameras) or software tools (e.g., photo editing 
software) used. Alternatively, or in addition, content authors could sign as themselves. 

 
10 Digital fingerprints are commonly used across the technology industry to tag and identify known harmful, illegal and/or sensitive content, especially 

image content, through the sharing of content through hash databases between technology platforms, civil society, and other entities. 

https://www.iso.org/obp/ui/en/#iso:std:iso:24138:dis:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso:24138:dis:ed-1:v1:en
https://csrc.nist.gov/Projects/digital-signatures
https://csrc.nist.gov/Projects/digital-signatures
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf


   

 

18 

 

3.1.2.3 Example Provenance Metadata Specifications 

Standardized Media Metadata Formats 

Media file formats have long provided standardized ways to include certain kinds of provenance information. 
These include camera settings, media dimensions and resolution, creation time, creation location, and 
attribution information. 

Existing standards for such metadata include XMP, EXIF, and IPTC. Usage guidance on IPTC has been updated 
to reflect AI-specific digital source types. Additional standards are noted in Appendix A.3. 

These standards do not make specific provisions for signed metadata; they allow signing metadata only by 
signing the entire file. There are limited interoperable mechanisms for such file-level signatures. S/MIME, a 
digital signing standard created for email attachments, could offer one solution for signing files that contain 
metadata, though it may be difficult to integrate with existing content processing workflows outside of email. 
Another proposed solution is Secure Evidence Attribution Label (SEAL), a nascent specification supported by 
open-source tooling. SEAL allows embedding a file signature into standard metadata fields and allows 
recipients to check signatures against a public key that is shared using the same decentralized mechanisms 
that are used to validate email senders. 

C2PA 

The Coalition on Content Provenance and Authenticity (C2PA) is an industry-led group of companies and 

organizations that has established a freely available specification for provenance data tracking. The 

specification, supported by open-source software and implementation tools from the Content Authenticity 

Initiative, allows storing and signing metadata, including assertions about origins, edit history, and “chain of 

provenance” (indications of what assets a piece of content was derived from). 

The specification currently supports image, audio, and video. It supports both embedded metadata and 

external metadata. C2PA allows linking metadata to content through any of the means noted in Section 

3.1.2.1, although it does not currently specify any supported schemes for perceptual hashing or embedding 

identifiers in watermarks. Embedded metadata can also specify a Uniform Resource Identifier to indicate 

where further metadata is stored. 

To allow users to sign metadata, the specification uses a combination of cryptographic algorithms (hash 

functions and digital signatures), digital certificates with public-private key pairs, and “trust lists” of certificate 

authorities assumed to be trustworthy. The C2PA organization manages a central default trust list (still in 

progress). 

C2PA has been evaluated mainly through a self-conducted harms modeling approach, which analyzes a system 

or tool to assess how and to what extent it may negatively affect users and other individuals. The assessment 

focused on who may be harmed directly or indirectly from the misuse of the C2PA and how to reduce such 

harms. Some examples of potential harms noted by C2PA’s modeling exercise include privacy loss, economic 

loss, dignity loss, and overreliance on systems.  

Further analysis, threat evaluations, and/or red teaming on C2PA could help to determine the extent to which 

the specification’s assumptions hold and it meets its design goals, to anticipate risks that may be posed by 

widespread implementation and adoption, and to improve the specification, particularly with respect to 

security and complexity, regarding which some third-party experts have raised concerns. See also the 

subsections below. 

https://www.iso.org/standard/75163.html
https://www.jeita.or.jp/japanese/standard/book/CP-3451E_E/
https://iptc.org/std/photometadata/specification/IPTC-PhotoMetadata
https://www.iptc.org/std/photometadata/documentation/userguide/#_applying_metadata_to_ai_generated_images
https://datatracker.ietf.org/doc/rfc5751/?include_text=1
https://github.com/hackerfactor/SEAL
https://c2pa.org/specifications/specifications/1.3/specs/C2PA_Specification.html
https://opensource.contentauthenticity.org/docs/introduction
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-12r1.pdf
https://github.com/contentauth/c2patool?tab=readme-ov-file#using-the-temporary-contentcredentialsorg--verify-trust-settings
https://github.com/contentauth/c2patool?tab=readme-ov-file#using-the-temporary-contentcredentialsorg--verify-trust-settings
https://c2pa.org/specifications/specifications/1.0/security/Harms_Modelling.html
https://www.infosys.com/iki/techcompass/content-provenance-authenticity.html
https://github.com/hackerfactor/SEAL/blob/master/COMPARISON.md#solution-4-c2pa


   

 

19 

 

C2PA is seeking to standardize its specification through ISO/TC 171/SC 2. 

3.1.2.4 Privacy Considerations for Metadata Recording 

Without appropriate privacy mechanisms, metadata recording could leak sensitive metadata and violate 
individuals’ and organizations’ privacy, which could, in extreme cases, enable human rights abuses. For 
example, if users are not aware that metadata is being embedded when content is captured or generated, 
they may inadvertently reveal information they intended to keep private about when, where, by whom, and 
with what tool an image was produced. A specification can recommend, as C2PA does, that media creation 
and editing tools generate metadata only once users have actively opted in and that they give users extensive 
control over which metadata is generated or redacted. However, such recommendations are not enforceable, 
and malicious or negligent tool providers could claim to promote transparency via metadata recording 
solutions but end up exposing user information without consent. 

Many internet platforms strip at least some metadata from uploaded files to protect privacy, underscoring the 
tradeoff between transparently recording provenance information and protecting privacy. 

Provenance metadata may be shared across many distinct systems, creating many windows for legitimate and 
illegitimate access, sharing, and exposure. Individuals will have greater control of their privacy if they have the 
ability to control or delete their metadata across various systems, including metadata repositories. There may 
also be less direct privacy risks: if a metadata specification allows a file’s metadata to point to an external URL 
as a source of additional metadata, attempts to access that URL can be tracked, facilitating tracking of those 
attempting to check the file’s provenance. 

The Internet Architecture Board’s “Privacy Considerations for Internet Protocols” provides a starting point for 
privacy guidelines that can be adapted to a digital content context. For example, these guidelines highlight a 
variety of privacy-specific and combined security/privacy threats that should be considered, and outline 
potential mitigations based on data minimization, user participation, and data security. 

3.1.2.5 Security Considerations for Metadata Recording with Digital Signatures 

Public Key Infrastructure 

To sign metadata, an entity generating or editing content would need a private key and a corresponding public 
key, managed via a public key infrastructure (PKI). Existing PKIs generally involve certificates being issued by 
certificate authorities (CAs), which operate as trusted third-party entities that are responsible for verifying 
that a public key is owned by the real-world entity named in the certificate. A recipient of content with signed 
metadata will check that they trust the CA that issued the corresponding certificate; if they do, and the 
signature is cryptographically valid, they will typically trust that the metadata was endorsed by the purported 
signer. 

While a well-designed PKI can provide a high degree of assurance in the identity of a signer (as they regularly 
do for the identities of websites), PKIs do have vulnerabilities that can undermine digital signatures. For 
example, different CAs have different requirements for proving identity. Additionally, CAs are occasionally 
compromised such that the attacker could issue valid certificates for entities with falsified identities, which 
could then be used to produce harmful but potentially trusted content. While such issues affect websites as 
well, they are especially challenging for digital signatures, where it is harder to define how revoked or expired 
certificates should be handled, and CAs’ practices may vary more than for website certificates.  

https://www.iso.org/committee/53674.html
https://www.hackerfactor.com/blog/index.php?/archives/1010-C2PAs-Butterfly-Effect.html
https://datatracker.ietf.org/doc/html/rfc6973
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://pages.nist.gov/800-63-3/sp800-63a.html
https://arxiv.org/pdf/2207.09335
https://arxiv.org/pdf/2207.09335
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Attacks on the Digital Signing Process 

The process of digital signing can be undermined by malicious or compromised user tools. For example, the 
software could deceive the signer into signing completely different content from what they believed they 
were signing: a tool could present one document to the user and ask for signing keys, then surreptitiously load 
another file and use the provided keys to sign that file instead or in addition. Malicious or compromised tools 
could similarly add or remove data before the signature is generated. 

Key Management 

If the metadata is signed in the name of the hardware or software tools used or in the name of some third-
party signing service, the private keys would be maintained by the tool or service provider. For tools that are 
not typically used while connected to the Internet (e.g., cameras), the keys would then have to be packaged as 
part of the tools, which could facilitate theft of the keys. Best practices for key management could involve the 
use of hardware security modules, key vaults, or other key management systems to keep keys secure. 
However, some experts question whether these measures would suffice to prevent keys from being 
compromised and used to sign untrustworthy content. 

If content authors wish to verifiably sign as themselves, in addition to or instead of having tools or signing 
services be the signers, the authors will need to apply for and manage their own keys and certificates, which 
can be challenging for many users.11  

Untrusted Signing Certificates 

Anyone can sign a certificate themselves rather than having an established CA sign it, essentially acting as their 
own CA with no reputation. Entities seeking to validate signed metadata will then see that the signature is 
cryptographically valid. Of course, unless the validator has specifically added the signer as a trusted source of 
certificate endorsements (which in C2PA would occur via “trust lists”), the validator will still be able to detect 
that the signature is untrusted. The software used to present the validation result would then need to make 
clear that the signer may not be who they claim; see Section 3.3.1.4. 

3.1.2.6 Scale Considerations for Metadata Recording 

Widespread use of metadata recording will depend on the development and adoption of shared specifications 
and on the creation and editing tools that support those specifications. Assuming these tools implement 
privacy controls like those described above, widespread use will also depend both on users opting in and on 
users and platforms not stripping the metadata (or at least saving it in external metadata repositories, which 
do not yet exist on a wide scale). Not all content authors will have the resources or capabilities to acquire and 
use the necessary tools. This may pose a particular problem for media organizations, which often purchase or 
reuse content from others, such as freelancers or eyewitnesses, who are less likely to have the knowledge, 
access, and (if applicable) cryptographic identities to use metadata recording tools. Some of these issues may 
be mitigated by establishing organizational principles, policies, and awareness for how to manage metadata. 

If content authors wish to sign as themselves, many (e.g., small content creators) will need to obtain new 
signing certificates. It is not clear how well the existing web-focused CA infrastructure would scale up to so 
many users who would need their personal or organizational identities verified, possibly in the absence of 
associated web domains. It is also unclear how much of a barrier the financial cost of purchasing certificates 
from a CA would be. 

 
11 An individual can always delegate key management to someone else they trust, including an organization they work for. Someone who is not working 

for an organization (e.g., a freelance photojournalist) would need to either manage their own keys or entrust their private keys to a third party. 

https://www.sciencedirect.com/science/article/pii/S0167404812001794#sec7
https://hackerfactor.com/blog/index.php?/archives/1019-Save-The-Date.html#c5244
https://royalsociety.org/-/media/policy/projects/digital-content-provenance/digital-content-provenance_workshop-note_.pdf
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As hardware, software, and file formats become outdated, metadata will need to be migrated to new 
platforms or systems. This may be addressed in part by storing metadata in formats that are resilient to 
technological changes and likely to be compatible with future systems, including standardized formats. 

Opportunities for Further Development 

Future metadata recording research and development could: 

● Explore whether and how it may be practical to associate metadata, particularly in metadata 
repositories, with raw text (e.g., by using some sort of hash of the text). 

● Analyze theoretically and empirically what information is useful to record in metadata for 
what contexts (e.g., whether and when detailed editing history information is helpful), and 
translate that analysis into metadata standards and usage guidelines. 

● Explore ways to bolster the security of on-device signing of metadata (e.g., using hardware 
security modules), including by securing signing keys against theft and establishing and 
standardizing methods for timestamping signatures while a device is offline and cannot 
connect to a timestamping service. 

● Develop more thorough threat modeling for user privacy and security when metadata is 
being recorded by content creation and editing tools. 

● Establish best practices for managing tradeoffs between completeness of metadata and 
other desiderata such as privacy, file size, and complexity. 

● Refine, assess the effectiveness of, and standardize robust specifications for provenance 
metadata. 

3.2 Synthetic Content Detection 

Synthetic content detection refers to techniques, methods, and tools used to classify whether a given piece of 
content or portion of content is synthetic or not. Synthetic content detection may rely on provenance 
information that was recorded, or it may look for other signals to help determine whether content has been 
generated or manipulated by AI or other tools or algorithms. Reliable and robust methods for detecting 
synthetic content can help to reduce harms and risks from the misuse of synthetic content when integrated 
within sound technical and social frameworks. 

Some detection methods are not specific to AI: many are borrowed from the broader media forensics space, 
and are applicable to detecting media manipulation by means other than AI as well as to detecting AI-
generated or AI-manipulated content. 

Synthetic content detection techniques broadly fit into three categories, which are not mutually exclusive 
(systems and organizations may employ multiple techniques together): 

● Provenance data detection12 involves simply looking for provenance data that has been tracked via 
digital watermarks (either overt or covert) or metadata. Metadata and covert watermarks are 
machine-readable, but overt watermarks typically are not—they are designed to be detectable by the 
human senses, not machines—which may make them harder for algorithms to detect. 

 
12 The forensics community sometimes distinguishes between “active” methods, which rely on various forms of tracked provenance data, and “passive” 

methods, which examine the content without assuming it has been deliberately marked in any way. This is a related distinction, though it is not specific 
to detecting synthetic content in particular. 

https://dl.acm.org/doi/pdf/10.1145/3633203
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Provenance data helps with detection primarily by giving a strong signal affirmatively describing the 
history of the content. If provenance data becomes widespread, the absence of provenance data in a 
situation where it would have been expected could also become a signal, at least in some contexts. 

As noted above, detecting a watermark always comes with some probability of error, and metadata 
may be inaccurate. 

● Automated content-based detection techniques identify synthetic content after it has been 
generated or modified based on traces left during generation or processing (e.g., image pixel 
regularities or inconsistencies). Content-based detection can also look for traces that manipulation 
leaves in the file metadata. 

Automated detection methods may be “open-box”—i.e., developed with participation from an AI 
model developer who has full access to and knowledge of the model—or they may be devised by 
others, potentially in a model-agnostic way. Some detection methods are possible only given some 
degree of access to, or at least knowledge of, the generating model. 

Automated detection methods reflect a constant cat-and-mouse game between the detection and 
generation communities. As soon as a new detection method is created, generation models improve, 
and adversaries learn new ways to avoid detection. Furthermore, detectors are often tied to and may 
only perform well on specific generators.  

● Human-assisted detection refers to the human-in-the-loop methods in which crowd workers, data 
labelers, and/or domain experts augment or supplement automated tools to help identify synthetic 
content. Human-in-the-loop methods can be used for a wide range of contexts, including to validate, 
assess, or supplement detection model outputs. 

Detection methods relying on humans require extensive labor, incur high costs, and presume that 
humans can, in fact, detect synthetic content. The effectiveness of these methods can be subject to 
variations depending on the domain and individuals’ lived experiences and expertise, and humans may 
find detection more difficult as synthetic content generation continues to increase in sophistication. In 
some contexts, humans may be able to distinguish AI-generated text with some reliability: depending 
on the language and domain, experienced chatbot users were found in 2023 to correctly classify the 
answers in question/answer pairs as synthetic or not 61%–100% of the time. Another study from the 
same year, however, found that human judgments of text were indistinguishable from chance, and a 
2024 study on audio, visual, and audiovisual modalities also found performance near chance. 

A complication for all detection methods is that a given piece of content may only be partially synthetic. For 
example, an image or video may have had an object removed and the space “inpainted” by AI, or the image or 
frames may have been expanded outward via AI “outpainting.” In either case, most of the content will be real; 
whether any manipulation by AI (or other means) is substantial may be subjective. 

Some detection tools attempt to deduce attributes beyond whether the content is synthetic. Such information 
can include what entities or tools generated the synthetic content and what types of purposes it was likely 
created for (e.g., hoax vs. satire vs. propaganda). This richer set of cues may help analysts identify and analyze 
malicious synthetic content. However, richer outputs may be less user-friendly and less accessible to lay 
audiences. One example of a multidimensional detection approach is the DARPA Semantic Forensics 
(SemaFor) program, which promoted the development of mutually complementary technologies to detect, 
attribute (determine sources of), and characterize (classify the intent of) falsified multimodal media at scale, 
focused on disinformation. 

https://openaccess.thecvf.com/content/CVPR2021W/WMF/html/Xiang_Forensic_Analysis_of_Video_Files_Using_Metadata_CVPRW_2021_paper.html
https://www.itic.org/policy/ITI_AIContentAuthorizationPolicy_122123.pdf
https://arxiv.org/pdf/2301.07597
https://www.pnas.org/doi/10.1073/pnas.2208839120
https://arxiv.org/pdf/2403.16760
https://www.darpa.mil/program/semantic-forensics
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The subsections below discuss representative automated methods, along with further issues for consideration 
for each modality. The synthetic content detection literature is vast, so this section offers merely 
representative examples of broad categories of methods. Further examples of detection tools, as well as 
datasets for training and evaluation, are given in Appendix D. 

3.2.1 Technical Methods for Automated Synthetic Content Detection 

Automated methods for detecting AI-generated, AI-modified, or otherwise manipulated content can examine 
a variety of features of the content using a variety of algorithmic methods. They can also make use of data or 
procedures for training in a variety of ways. 

Some types and examples of features13 for various modalities are noted below, with examples of tools that 
use them. (As noted in the disclaimer on page 3, no endorsement or recommendation is implied.) As in earlier 
tables, modalities in the second column are listed based on what the technique is in principle applicable to, 
and not necessarily what modalities it has been applied to in practice. 

Description of feature Example forms/methods by which 
feature can be fed to detectors 

Example tools 

Perceptible features that may 
reflect manipulation or 
generation or indicate 
authenticity. These may be 
related to garbled content (e.g., 
muffled sound or irregular 
intonation) or to semantic 
inconsistencies in the content 
(e.g., reflections or shadows that 
do not match lighting, sound and 
movement that do not align, 
artifacts from blending modified 
images with backgrounds, or 
mutually contradictory 
statements). Such features are 
often provided to detectors via 
manually defined formulas 
designed to extract semantically 
relevant information. 

Token co-occurrence patterns, fluency, 
prevalence of subjective language, or 
other elements of writing style (text) 

StyloAI (text) 

Annotations for factuality (e.g., based on 
fact-checking databases) or 
contradictions (e.g., from reasoning 
models) (text) 

Knowledge graph-
based fact-checking 
(text) 

Texture or gradient fluctuations (image, 
video) 

LBPNet (image) 

Optical flow, i.e., the pattern of motion of 
graphical elements between frames 
(video) 

CNN + LSTM optical 
flow classifier (video) 

Object-level features that may reveal 
visual inconsistencies (e.g., earrings, eye 
colors, or reflections in eyes that may be 
asymmetric; breathing or blinking 
patterns that may be implausible) (image, 
video) 

Facial artifact 
detection (image) 

In Ictu Oculi (video) 

 
13 “Features” here refers to the way the input is fed into the system or model, perhaps reflecting some handcrafted preprocessing. Perceptible or 

imperceptible cues may also be discovered and implicitly leveraged by systems—e.g., a neural network that is fed raw pixels may learn a behavior that 
amounts to detecting implausible shadows. However, the table is intended to describe what approaches researchers and engineers can consciously 
apply. Accordingly, it classifies feature types in terms of what the detector inputs are deliberately designed to reflect. 

https://arxiv.org/abs/2405.10129
https://www.researchgate.net/publication/348931042_Fake_news_detection_and_fact_verification_using_knowledge_graphs_and_machine_learning?channel=doi&linkId=6017de6892851c2d4d0aac7f&showFulltext=true
https://www.researchgate.net/publication/348931042_Fake_news_detection_and_fact_verification_using_knowledge_graphs_and_machine_learning?channel=doi&linkId=6017de6892851c2d4d0aac7f&showFulltext=true
https://www.sciencedirect.com/science/article/pii/S2666281722001330
https://ieeexplore.ieee.org/abstract/document/9892905
https://ieeexplore.ieee.org/abstract/document/9892905
https://ieeexplore.ieee.org/document/8638330
https://ieeexplore.ieee.org/document/8638330
https://arxiv.org/pdf/1806.02877
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Object-level features that can indicate 
authenticity if present and may indicate 
synthetic origins if absent (e.g., speech 
pauses, breath sounds, tiny motions, or 
other passive “liveness” checks) 

Klick Labs deepfake 
detector (audio) 

Imperceptible cues in the content 
that can be extracted using 
forensic or statistical techniques 
and examined to determine 
whether they more closely 
resemble authentic content or 
synthetically modified or 
generated content. 

Distribution of spatial frequencies (image, 
video) 

FreqNet (image) 

Bilateral High-Pass 
Filters (image) 

 Distribution of temporal frequencies 
(video, audio) 

Bispectral analysis 
classifier (audio) 

MFAAN (audio) 

 Error level analysis, which highlights 
compression rate differences in different 
parts of an image (image, video) 

ELA + DL deepfake 
detector (image) 

 “Fingerprint” patterns left either by noisy 
sensors—e.g., photo-response non-
uniformity—or by generative models 
(image, audio, video) 

DIffusion 
Reconstruction Error 
(DIRE) (image)  

CNNDet (image) 

PRNU-based Deepfake 
Detection (image) 

 Perplexity, or unpredictability of text, and 
burstiness, or clustering of appearances 
of specific words or phrases (text) 

GPTZero (text) 

Output from a backbone model, 
i.e., an off-the-shelf foundation 
model whose final or near-final 
layer outputs can be used as an 
alternate representation of the 
input content to help machine 
learning classifiers more easily 
learn to distinguish synthetic 
content. 

ResNet50, XceptionNet (image, video) SRTNet (video) 

RoBERTa, LLAMA3, Qwen2 (text) DPIC (text) 

Ghostbuster (text) 

TopFormer (text) 

https://biomedeng.jmir.org/2024/1/e56245/
https://arxiv.org/pdf/2403.07240
https://arxiv.org/pdf/2109.00911
https://arxiv.org/pdf/2109.00911
https://farid.berkeley.edu/downloads/publications/cvpr19/cvpr19b.pdf
https://farid.berkeley.edu/downloads/publications/cvpr19/cvpr19b.pdf
https://arxiv.org/pdf/2311.03509
https://scindeks-clanci.ceon.rs/data/pdf/0040-2176/2023/0040-21762304445R.pdf
https://www.nature.com/articles/s41598-023-34629-3
https://www.nature.com/articles/s41598-023-34629-3
https://arxiv.org/pdf/2303.09295
https://arxiv.org/pdf/2303.09295
https://arxiv.org/pdf/2303.09295
https://arxiv.org/pdf/1912.11035
https://dl.acm.org/doi/pdf/10.1145/3437880.3460400
https://dl.acm.org/doi/pdf/10.1145/3437880.3460400
https://telblog.unic.ac.cy/2023/04/11/perplexity-and-burstiness-in-ai-and-human-writing-two-important-concepts/
https://telblog.unic.ac.cy/2023/04/11/perplexity-and-burstiness-in-ai-and-human-writing-two-important-concepts/
https://gptzero.me/
https://link.springer.com/article/10.1007/s11042-022-13966-x
https://arxiv.org/pdf/2305.12519
https://arxiv.org/pdf/2305.15047
https://arxiv.org/pdf/2309.12934


   

 

25 

 

Raw content with no 
preprocessing, typically to allow 
trained models such as deep 
neural networks to determine the 
relevant features for themselves. 

(Not applicable; content is presented 
directly to detector) 

CNN layer for 
manipulation 
detection (image) 

Metadata that may be 
implausible or inconsistent with 
other cues, revealing potential 
falsification, modification, or AI 
generation14 

Geotags, timestamps, device information, 
or detailed provenance metadata (e.g., in 
C2PA format) that may be falsified 
(image, video, audio) 

Forensic analysis of 
video metadata 
(video) 

 

Algorithmic tools for classifying synthetic content, based on the above features or others, include: 

Description of algorithmic method for detection 
based on input features 

Example tools 

Statistical formulas or decision criteria can be 
manually constructed to classify or score content as 
synthetic or not. Such methods may also be used to 
provide cues to assist human decision-making or as a 
way of pre-processing content for downstream 
detection algorithms. 

Discernibility metric for chrominance (image) 

DetectGPT (text) 

GLTR (text) 

Classical machine learning detectors are trained to 
classify content based directly on the input features 
provided to them, often with statistical algorithms 
that are less complex or computationally intensive 
than neural networks. 

Bispectral analysis classifier (audio) 

StyloAI (text) 

Ghostbuster (text) 

Deep neural network detectors use many layers of 
intermediate processing, which are trained so that 
later layers re-represent the input in a manner that is 
more amenable to classification or other tasks. 

AMTEN (image) 

FreqNet (image) 

SRTNet (video) 

SCN+PRNU analysis for deepfake detection 
(video) 

OpenAI AI classifier (text) 

 

 
14 This is distinct from the metadata recording techniques discussed in Section 3.1.2. That section is concerned with metadata—typically trustworthy 

metadata—that is added in a deliberate attempt to help downstream recipients identify the content as synthetic or not. Here we are concerned with 
detecting traces of modification or falsification in metadata, regardless of when or why the metadata was added, that may indicate that the content is 
inauthentic or misrepresented. 

https://dl.acm.org/doi/pdf/10.1145/2909827.2930786
https://dl.acm.org/doi/pdf/10.1145/2909827.2930786
https://dl.acm.org/doi/pdf/10.1145/2909827.2930786
https://openaccess.thecvf.com/content/CVPR2021W/WMF/papers/Xiang_Forensic_Analysis_of_Video_Files_Using_Metadata_CVPRW_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021W/WMF/papers/Xiang_Forensic_Analysis_of_Video_Files_Using_Metadata_CVPRW_2021_paper.pdf
https://www.sciencedirect.com/science/article/pii/S0165168420301596?via%3Dihub#sec0005
https://dl.acm.org/doi/10.5555/3618408.3619446
https://arxiv.org/pdf/1906.04043
https://farid.berkeley.edu/downloads/publications/cvpr19/cvpr19b.pdf
https://arxiv.org/abs/2405.10129
https://arxiv.org/pdf/2305.15047
https://www.sciencedirect.com/science/article/pii/S107731422100014X
https://arxiv.org/pdf/2403.07240
https://link.springer.com/article/10.1007/s11042-022-13966-x
https://www.researchgate.net/profile/Zeno-Geradts/publication/329814168_Detection_of_Deepfake_Video_Manipulation/links/5c1bdf7da6fdccfc705da03e/Detection-of-Deepfake-Video-Manipulation.pdf
https://openai.com/index/new-ai-classifier-for-indicating-ai-written-text/
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A third dimension of variation is whether and how the detector is trained:15 

Training 
paradigm 

Description Example tools 

None No training data or procedure is used. This category overlaps 
heavily with “statistical formulas or decision criteria” above: 
such formulas and criteria are typically hand-crafted rather 
than trained. 

Discernibility metric 
for chrominance 
(image) 

DetectGPT (text) 

Supervised 
learning 

At training time, the learning algorithm is presented with 
labeled examples, i.e., pieces of content along with 
indicators of whether they are synthetic (or perhaps which 
portions are synthetic). The detector learns to generalize 
from these examples. 

MMnet (image) 

Deepfake_SupCon 
(image) 

Adversarial 
training 

As part of the training process, new examples are generated 
that are specifically intended to be difficult for the detector 
to classify. These examples may be modified versions of 
existing training examples (e.g., images that have been 
compressed or otherwise corrupted), or they may be 
generated by an AI model that seeks to fool the detector 
(e.g., as part of a generative adversarial network, or GAN). 

SLADD (image) 

RADAR (text) 

 

Transfer 
learning via 
foundation 
models 

A foundation model is trained using extensive data that is 
not specific to the task of detecting synthetic content. It is 
then either built upon (e.g., as a backbone model) or used 
directly as a detector, transferring its more general 
knowledge about the statistics of content to synthetic 
content detection. 

All examples above of 
backbone models (all 
modalities) 

Prompting LLMs to 
detect inconsistencies 
(text; if LLM is 
multimodal, also 
image, video, audio) 

Binoculars (text) 

Transfer 
learning from 
other 
classifiers 

A classifier is trained for some other task or some limited 
form of synthetic content detection. It is then adapted to 
classify whether content is synthetic (or whether it is a 
specific type of synthetic content). 

TAR (image) 

 

 
15 Settings where a model is not specifically trained on the detection task are sometimes called “zero-shot” settings. However, usage of this term seems 

to be inconsistent, particularly regarding whether it is applicable to techniques that do not use any machine learning at all. 

https://www.sciencedirect.com/science/article/pii/S0165168420301596?via%3Dihub#sec0005
https://www.sciencedirect.com/science/article/pii/S0165168420301596?via%3Dihub#sec0005
https://dl.acm.org/doi/10.5555/3618408.3619446
https://ieeexplore.ieee.org/abstract/document/10418195
https://openaccess.thecvf.com/content/WACV2022W/XAI4B/papers/Xu_Supervised_Contrastive_Learning_for_Generalizable_and_Explainable_DeepFakes_Detection_WACVW_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Chen_Self-Supervised_Learning_of_Adversarial_Example_Towards_Good_Generalizations_for_Deepfake_CVPR_2022_paper.pdf
https://arxiv.org/pdf/2307.03838
https://arxiv.org/pdf/2310.14724
https://arxiv.org/pdf/2310.14724
https://arxiv.org/pdf/2401.12070
https://link.springer.com/chapter/10.1007/978-3-030-78120-0_23
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Any of the training techniques can be used either to train a new model or to fine-tune an existing model (e.g., 
a foundation model). The techniques may also be used in combination with each other, and most can involve a 
human in the loop—e.g., to help resolve uncertain cases or augment the training data. 

3.2.2 Detection Performance and Additional Considerations by Modality 

Detectors often produce a score representing the probability that a piece of content is synthetic. In the 
discussions below, “accuracy” refers to the fraction of correct classifications a detector achieves using some 
chosen score cutoff. “AUC” (area under curve) refers to a more flexible metric that allows for variation in 
cutoffs: it represents the probability that the score for a randomly chosen piece of synthetic content will be 
higher than that of a randomly chosen non-synthetic one, i.e., the probability that the detector could, with an 
appropriate cutoff, distinguish the two samples. See Appendix E.1 for more on these metrics. 

3.2.2.1 Synthetic Image Detection 

Some synthetic image detection tools apply the techniques laid out in Section 3.2.1 to specific types of images. 
For example, F3Net uses deep neural networks applied to spatial frequency information specifically to detect 
fake faces, and Gram-Net similarly customizes a neural network architecture to leverage local texture 
information in fake face detection. 

The accuracy of synthetic image detectors varies depending on the tool or technique and the characteristics of 
the evaluation dataset (e.g., the extent of image compression or corruption, image style, what is depicted in 
the images, etc.). Experiments also indicate that detectors trained on images from a particular generator 
perform better on images generated by the same generator than on other synthetic images. Cross-generator 
evaluation is thus more difficult but also more realistic, particularly since someone using a detector may not 
even have a strong hypothesis about what generator was used for a given image. In the cross-generator 
setting, detectors tend to exhibit substantial error rates, particularly after post-processing (e.g., compression 
and resizing): one 2023 paper reported accuracy rates of 61% to 70%; another from 2022 reported accuracy 
ranging from 50% to 62% and AUC from 52% to 91%. 

3.2.2.2 Synthetic Video Detection 

Synthetic video detectors vary widely in the types of video content for which they are designed or simply on 
which types they perform well. For example, some techniques are designed specifically for “deepfakes” of 
faces. Even within that limited domain, a video could be an identity swap, where a face in a source video is 
replaced with someone else’s face; an expression swap (or “puppet master”), where someone’s mouth and 
face are manipulated to appear as the same person but with different expressions; an attribute manipulation, 
where attributes such as skin color, hair color, age, or eyewear are replaced; or an entire face synthesis, where 
either a real person’s face or a non-existent face is generated as a new video or an addition to an existing 
video (often based on a textual prompt). Detectors may target one or more of these subcategories. 

Detector performance may vary based on other factors, as well, including the detection method used, 
whether the audio is examined alongside the video frames, whether the detector was trained on images from 
the generator it is being used for, and post-processing or other corruption that is applied to the video (e.g., 
compression, resizing, or addition of noise, which may be tuned specifically to fool detectors). 

Given this wide range of factors, it is unsurprising that various studies show varying performance results for 
synthetic video detectors under the different conditions tested by the studies and evaluation datasets. One 
2023 survey shows accuracy ranging from 62% to 99% and AUC from 82% to 98%. 

https://arxiv.org/pdf/2007.09355v2
https://arxiv.org/pdf/2002.00133
https://openreview.net/pdf?id=GF84C0z45H
https://openreview.net/pdf?id=GF84C0z45H
https://arxiv.org/pdf/2211.00680
https://www.mdpi.com/2313-433X/9/1/18
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/33572
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/33572
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3.2.2.3 Synthetic Audio Detection 

Synthetic audio detection performance varies based on detection technique, evaluation dataset, and audio 
preprocessing technique used. It can also vary based on how the audio was generated: text-to-speech 
generators are trained to speak written text aloud in some speaker’s voice; speech-to-speech generators 
translate speech from one language to another; and imitation-based generators transform a source speech to 
sound like some other target audio while retaining the original speech’s linguistic content (e.g., for voice 
impersonation or conversion). There are also systems for generating forms of audio other than speech, such as 
music.  

Detection robustness can additionally be degraded by factors present in real-world audio that may not be 
reflected in datasets. Such factors include audio generated by models whose outputs the detector was not 
trained on (the “open-set setting”) and real-world noises such as multiple speakers and background noises 
(e.g., from outdoors). 

As of September 2024, reported accuracy scores ranges from 50% to well above 90%, depending on the 
method and evaluation dataset. See Section 4.2 for other metrics that have been used for synthetic audio 
detection. 

Most current research is focused on developing detection methods for identifying synthetic voices speaking in 
English. A detection model developed for one language may not perform as well for other languages or 
dialects, especially those with limited data. Most detection methods focus solely on identifying synthetic 
audio, without accounting for accents or dialects. 

3.2.2.4 Synthetic Text Detection 

Synthetic text detection adds several considerations not discussed with respect to all modalities: 

● Some techniques for analyzing imperceptible cues rely on examining the internals of the generative 
model (e.g., the probabilities assigned by the model to each potential next token). When the original 
generative model does not permit such examination or is unknown, some techniques still work when 
another similar LLM is examined as a proxy. 

● What patterns a piece of text exhibits (e.g., how unpredictable it is) depends highly on the prompt in 
response to which it was generated. More unusual or elaborate prompts can thus make detection 
more difficult. 

● Compared to other modalities, it is relatively easy to mix AI-generated and non-AI-generated text. 
Some detectors operate at the sentence level rather than at the document level, which may help to 
work around this issue. 

● A number of detectors leverage an additional algorithmic technique for text: they use another 
language model to generate alternatives to or continuations of the text being examined. LLM-
generated alternatives or continuations for synthetic text can exhibit different imperceptible cues 
than those for human-generated text. 

The effectiveness of synthetic text detection is subject to ongoing debate. Many studies cite a lack of 
standardized testing approaches and datasets as a barrier to rigorously assessing detectors’ performance. 
Another central issue is paraphrasing attacks: as discussed in Section 3.1.1.3 regarding watermarking, 
paraphrasing can substantially degrade the performance of non-watermarking-based detectors. The same 
theoretical results that indicate that it may not be possible for watermarking to be secure also suggest that a 
text generator (or paraphraser) that approximates the distribution of human text sufficiently closely will not 
be readily detectable. It remains an open question how relevant these theoretical and empirical results are to 

https://doi.org/10.48550/arXiv.2112.08352
https://arxiv.org/abs/2008.03648
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1520
https://www.mdpi.com/1999-4893/15/5/155
https://www.mdpi.com/1999-4893/15/5/155
https://arxiv.org/pdf/2209.07180.pdf
https://dl.acm.org/doi/10.5555/3618408.3619446
https://arxiv.org/pdf/2401.12070
https://arxiv.org/pdf/2401.12070
https://arxiv.org/pdf/2305.12519v2
https://dl.acm.org/doi/10.5555/3618408.3619446
https://openreview.net/pdf?id=Xlayxj2fWp
https://arxiv.org/pdf/2304.04736
https://arxiv.org/pdf/2310.15264
https://arxiv.org/pdf/2303.11156
https://arxiv.org/pdf/2401.12070
https://arxiv.org/pdf/2303.11156
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real-world settings, particularly since longer texts may mitigate the effects of paraphrasing. Several studies 
have found that detectors tend to perform little better than chance when given short texts. AUC rose to about 
90% when given longer samples (~750 words) and, for the best detectors, remained at about 80% or above 
even after paraphrasing attacks. 

Most detectors have been built for English-language text. They have also been shown to classify English text as 
AI-generated more often when the writer is not a native English speaker. There is a need for datasets and 
detectors that cover a broader swath of English usage and a broader set of languages. 

If someone is in possession of an LLM’s model weights, they can fine-tune the model to generate text that 
evades detection using a given detector (or set of detectors) as a training signal. The resulting fine-tuned LLM 
can produce classification results close to chance or even worse than chance across a range of detectors. 

Opportunities for Further Development Across Detection Techniques: Further research could 
address: 

● Detecting partially synthetic content and indicating which portions may be synthetic. 
● Enriching detection techniques beyond binary classification as synthetic or not to also 

identify other characteristics (e.g., possible intent). 
● Improving detection performance on synthetic content that was post-processed or 

corrupted by noise, transmission, compression, or reformatting (e.g., by social media 
platforms). 

● Assessing and improving detector performance when voice recordings are corrupted by 
noise, coding, or transmission problems, as well as synthetic voice recordings posted on 
social media sites or utilized live during phone calls. 

● Equipping automated detectors to better leverage elements of context, such as the source 
URL or user for the content, other media in the same document, or accompanying claims 
made about the content (e.g., time of capture). 

● Ways of combining different detection techniques (e.g., looking jointly at provenance 
metadata, watermarks, perceptible and imperceptible cues, context, and metadata traces 
of manipulation to form an aggregate assessment of whether content is synthetic). 

● Assessing the effectiveness of human detection, particularly under what circumstances and 
to what extent human-assisted setups can enhance detection efforts. 

 

3.3 Labels and User Perception 

Most provenance data tracking techniques record provenance information in machine-readable form, 
sometimes referred to as indirect disclosures. Similarly, synthetic content detection processes yield machine-
readable data about likely origins or history. Recorded or detected provenance data is not necessarily 
displayed to users or consumers of the content. 

To provide awareness about whether and how AI was involved in creating the content, or about other relevant 
provenance information, the machine-readable data (or some digest thereof) must typically be presented to 
humans. This is typically accomplished via labels, sometimes referred to as direct disclosures, that are 
presented to individuals who interact with digital content. Facilitating such human-friendly labels is often the 
end goal of indirect disclosure methods such as metadata recording, covert digital watermarking, and 
synthetic content detection. 

https://arxiv.org/pdf/2303.11156
https://arxiv.org/pdf/2304.04736
https://www.sciencedirect.com/science/article/pii/S2666389923001307
https://openreview.net/pdf?id=4eJDMjYZZG
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Techniques for labeling, which may vary by content modality, include: 

● overt watermarks (e.g., icons overlaid on content indicating AI usage; audible background noises 
inserted into audio content); 

● other labels within the content (e.g., warning labels, pre-roll, or interstitial labels in video and/or 
audio; font differences to highlight AI-generated text); and 

● disclosures in the user interfaces that accompany the content (e.g., disclaimers or warnings on social 
media pages about the role of AI in developing the content; symbols indicating the presence of 
provenance data that demonstrates authenticity). 

How users experience and perceive such labels is an important consideration for digital content transparency, 
and by extension for the open information ecosystem and wider information integrity efforts. The audiences 
of direct disclosures often interact with these disclosures on various online and media platforms, which play 
an important role in communicating information to users. There appears to be limited consensus from 
industry, civil society, and academia about how labels can be designed to best promote digital content 
transparency and how effective they can be. More research and evaluations are needed to inform effective 
label design across context and use cases. 

3.3.1 Examples Related to Challenges in User Experience and Perception 

3.3.1.1 What Information to Display in What Context 

The labeler may wish to present more or less information than what is available. In the C2PA specification, the 
tool or user applying the specification decides how to record any alterations in the metadata, as well as what 
metadata to redact. As a result, some metadata may be missing, too unspecific to be helpful, or even 
inaccurate (despite being signed). Studies find that attaching too much information to a user-facing label can 
be confusing to users, while too little information may not provide enough context for user interpretation. 

The significance of modifications to content can also be context-specific. For example, cropping a photo could 
be adversarial depending on what is cropped and how it changes the meaning of the image. How to label such 
context-sensitive information, including when it should be labeled at all, are important considerations for label 
design. 

3.3.1.2 Public Trust in Content 

Public trust is influenced by more than labels: it may depend, for example, on who signed the content and 
how much trust exists in that entity or institution; the message and narrative of the content itself; and how 
other users engage with the content on social media platforms through likes, reshares, and other forms of 
engagement. Some initial research shows that the media format and misinformation labels on digital content 
were less salient than the underlying narrative and framing of the content. 

Other research found that supplying provenance information did lower trust in manipulated media. However, 
users do not appear to distinguish the credibility of provenance information from the credibility of the digital 
content itself: when provenance information was marked as falsified or incomplete, they trusted the content 
even less than when no provenance information was shown, even for honest media. If such impacts on trust 
prove widespread, then making potentially flawed provenance information available to users could be worse 
for digital content transparency and information integrity than exposing no provenance information at all. 

Further research is needed on how provenance labels may affect public perceptions and trust, including how 
impacts vary by context or application in which the labels are presented. 

https://foundation.mozilla.org/en/research/library/in-transparency-we-trust/research-report/
https://foundation.mozilla.org/en/research/library/in-transparency-we-trust/research-report/
https://arxiv.org/pdf/2011.12758
https://osf.io/preprints/socarxiv/mdvak
https://dl.acm.org/doi/pdf/10.1145/3610061
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3.3.1.3 Perceptions of Synthetic Origins and Deceptiveness 

Synthetic content is sometimes inaccurately assumed to be harmful or deceptive, in contrast to non-synthetic 
content (sometimes described as “authentic” content) that is assumed to be benign. If labeling schemes are 
based on such a binary understanding of synthetic content as harmful and non-synthetic content as harmless, 
or if the labels are interpreted as conveying this distinction, they will likely fail to achieve their goals with 
respect to digital content transparency. Furthermore, as the lines between “nonsynthetic” and “synthetic” 
content continues to blur, especially as individuals begin to utilize AI agents for tasks, the current definitions of 
these terms may lose their utility, and labeling this content will become even more challenging. 

One academic analysis offers two distinct goals for labeling: labels that serve a “process-based” goal aim to 
reveal the technical methods used to create or modify content (e.g., “AI-generated”), while labels that serve 
an “impact-based” goal focus on the potential harm from the content (e.g., “manipulated” or “deceptive”). 
The analysis recommends calibrating labels’ terminology and tone to which purpose(s) the labels are meant to 
serve. 

3.3.1.4 Communicating Uncertainty in Detection or Provenance Data 

For a user to react appropriately to a provenance label, they will often need to know how reliable the 
information it contains is. For example, they will need to keep in mind the possibility that a synthetic content 
detector or a watermark detector could simply be wrong. Many such detectors already compute an internal 
score indicating, e.g., how likely they think it is that the content is synthetic, which could help users assess the 
reliability of the information. Yet there remains the challenge of communicating this known uncertainty to the 
user, as well as the challenge of reminding the user that even the model’s internal assessment of uncertainty 
could be miscalibrated. 

Even metadata, which can generally be extracted with confidence, may carry uncertainty. For example, a label 
may want to present unsigned metadata in case it is informative, but at the same time, it may need to 
communicate that the metadata is unsigned or signed by an unknown certificate, yielding uncertainty about 
the validity of the metadata. 

The issue of communicating about uncertainty and reliability is particularly salient in applications where errors 
carry high risk of negative impact. For example, on the basis of synthetic text detectors, students have been 
wrongfully accused of cheating with AI technology, putting their academic futures at risk. 

3.3.2 Case Studies 

In the context of misinformation, many social media platforms have attempted to label state-owned media 
and manipulated media, but the impact on information integrity issues remains unclear. 

The Partnership on AI gathered case studies of labeling and disclosure techniques by entities, including 
software companies, generative AI companies, and public news broadcasters. Examples include OpenAI using 
a provenance classifier to detect DALL-E generated images; the BBC adding both audio disclosures (narrator 
captions) and on-screen captions for interviews where AI was used for face-swapping to protect anonymity; 
and Adobe deploying C2PA in its Firefly generative AI product. These case studies were submitted by the 
entities participating and should be examined as self-reported use cases. 

One key takeaway from these studies is that the style of a label matters, and its effects can be contingent on 
modality as well as use case. For example, combining multiple label modalities (audio and visual) for a video 
news segment using generative AI may be more beneficial for the audience. Another takeaway is that 
deployment risks may be limited by having provenance approaches implemented first by trusted users. Labels 
also may have to trade off accuracy and reliability against openness and accessibility. Lastly, content creators 

https://computing.mit.edu/wp-content/uploads/2023/11/AI-Policy_Labeling.pdf
https://www.rollingstone.com/culture/culture-features/student-accused-ai-cheating-turnitin-1234747351/
https://syntheticmedia.partnershiponai.org/#case_studies
https://partnershiponai.org/wp-content/uploads/2024/03/pai-synthetic-media-case-study-openai.pdf
https://partnershiponai.org/wp-content/uploads/2024/03/pai-synthetic-media-case-study-openai.pdf
https://partnershiponai.org/wp-content/uploads/2024/03/pai-synthetic-media-case-study-bbc.pdf
https://partnershiponai.org/wp-content/uploads/2024/03/pai-synthetic-media-case-study-adobe.pdf
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and distributors are often treated differently with respect to provenance labeling; it remains an open question 
how these entities can best share the task of labeling. 

Opportunities for Further Development 

It would be helpful to have more extensive and thorough sociotechnical research and evaluations 
to understand how people interact with digital content transparency information across 
demographics, technical systems, and environments. This will help to inform not just labeling, but 
also the design of technical interventions that feed into the labels. 

 

4 Testing and Evaluating Digital Content Transparency Techniques 

By testing and evaluating provenance data tracking and synthetic content detection techniques, the technical 
community can measure existing techniques’ effectiveness, identify gaps or issues with these techniques, and 
recognize when new ideas improve on existing techniques. 

The testing and evaluation of digital transparency techniques described in this section focus on the testing and 
evaluation of provenance data tracking and synthetic content detection techniques. See Appendix E for more 
details.  

4.1 Testing and Evaluating Provenance Data Tracking Techniques 

4.1.1 Testing and Evaluating Digital Watermarking Techniques 

Digital watermarking techniques can be evaluated in terms of: 

● The accuracy with which they can be detected in unmodified watermarked outputs. This is typically 
set up as a binary classification task. 

● Their robustness and security against different kinds of innocuous modifications and adversarial 
attacks. The latter may include removal attacks (i.e., removing the watermark without having to break 
the encryption or obtain the watermarking key); distorting watermarks to fool a detector; cracking 
security measures to remove the watermark; and forgery attempts. Such experiments may treat 
watermark detection under a given set of conditions as a simple binary classification task (watermark 
present vs. not). 

● The distortion of the resulting content once the watermark is applied, i.e., how well quality is retained 
relative to unwatermarked content. This requires some form of quality judgment, which can be done 
by humans or by automated means. For text, automated methods may include having LLMs rate the 
quality of watermarked LLM outputs. For images, video, and audio watermarks that are applied after 
generation, metrics such as peak signal-to-noise ratio, image fidelity, normalized cross-correlation, 
structural similarity index measure, and other pairwise similarity metrics can characterize how much 
the watermark distorts the content. For any kind of media watermark, the output quality can be 
evaluated directly, or the output can be evaluated for how well it implements the prompt (assuming 
there is one). When humans are evaluating, metrics such as mean opinion scores can be used. When 
evaluating watermark robustness, human or automated means can also be used to measure the 
distortion after a watermark removal attack has been performed. 

See Appendix E and Section 4.2 regarding metrics, datasets, and experimental setup for evaluating watermark 
detection as a binary classification task. 

https://ieeexplore.ieee.org/document/940053
https://www.sciencedirect.com/science/article/pii/S0165168401000391
https://www.researchgate.net/publication/228800239_A_public_automated_web-based_evaluation_service_for_watermarking_schemes_StirMark_Benchmark
https://ieeexplore.ieee.org/document/10113036
https://arxiv.org/pdf/2303.11156
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4.1.2 Testing and Evaluating Metadata Recording Techniques 

As noted in Section 3.1.2.3, metadata recording has been evaluated using harms modeling. This evaluation 
method qualitatively assesses the potential downsides of a given method, but it does not attempt to assess 
the upsides—how effectively a metadata recording scheme provides the benefits it is intended to. Metadata 
recording would benefit from additional approaches, including quantitative ones, to assess schemes’ 
effectiveness in addition to their safety. 

4.2 Testing and Evaluating Synthetic Content Detection Techniques 

Evaluating any detection technique requires careful consideration of the training and evaluation datasets. 
Evaluations will be most informative if the evaluation datasets reflect the distribution of content on which a 
detection tool is expected to be used, both for the authentic and the synthetic portions of the datasets. This 
includes distributions of subject matter (e.g., some detectors may focus on faces), cultural contexts (e.g., 
languages, accents, or types of clothing), benign distortions (e.g., compression and resizing or background 
noises), adversarial modifications or attacks (e.g., paraphrasing, frame insertions or deletions, or content 
specifically designed to fool detectors), and size of each sample (e.g., image or frame dimensions or text or 
audio length). 

For automated and human-assisted detection, another important consideration is what generation systems 
are included in the training and evaluation datasets. Detectors often perform best on content from the 
generators they were trained on, but they are often expected to generalize to content from novel generation 
models, so evaluations are most informative when the evaluation data includes outputs of models not seen in 
training. This is also a concern for detecting watermarks that are not specific to a single-generation technique 
or model. 

Developing comprehensive datasets that can meet all these criteria even for relatively constrained use cases 
remains a challenge. 

4.2.1 Testing and Evaluating Provenance Data Detection Techniques 

See Section 4.1 regarding approaches for testing watermark detection. The discussion of experimental setup 
and metrics in Section 4.2.2 below is also largely applicable to watermark detection. 

Provenance metadata detection is relatively straightforward: if the data is present, either in the file or in a 
known repository, it can be detected. Testing and evaluation of metadata detection as such is therefore less of 
a concern; the key questions surround how to validate or interpret metadata that is detected. 

4.2.2 Testing and Evaluating Automated Content-Based Detection Techniques 

The most common way to measure and evaluate a synthetic content detection system is to construct an 
evaluation dataset that has appropriately labeled human-generated (authentic) samples (e.g., images or 
videos) and synthetic samples. The detector is queried for each sample to determine whether the sample is 
synthetic. Typically, the detector will give a real-valued score for each input—which can generally be 
interpreted as a probability—indicating how likely the input is synthetic. Then, any of the classification 
performance metrics described in Appendix E can be applied, using some probability or score cutoff for 
metrics such as accuracy or F1. 

Accuracy, Area Under the Receiver Operator Curve (AUROC), and F1 scores are frequently reported in 
experiments. However, some experts argue that these metrics, all of which balance over-identification of 
synthetic content against under-identification, do not capture the most important considerations for synthetic 
content detection. In many contexts, false positives—assessing human content as AI-generated—can be 
extremely damaging, potentially resulting in major reputational harms or adverse treatment. Accordingly, 

https://link.springer.com/chapter/10.1007/978-3-030-87664-7_9
https://www.sciencedirect.com/science/article/abs/pii/S0031320396001422
https://arxiv.org/pdf/2401.12070
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some studies prefer to report the true positive rate that can be achieved when the probability cutoff is set to 
limit false positives to some low probability x (abbreviated as TPR@FPR=x, for “true positive rate at false 
positive rate,” where x might be a value like 0.01%). 

4.2.3 Testing and Evaluating Human-Assisted Detection Techniques 

Human-assisted detectors can be tested in a variety of ways; how the detector is tested depends on the form 
of assistance. If the humans’ role is merely to provide training data, then the primary evaluation metric will 
still be the classification performance of the trained system. It may also be desirable to compare performance 
with and without some additional human annotations (e.g., annotations recruited by the system in an active 
learning setting). Another kind of human-assisted detector is where an automated model, through some user 
interface, provides information to a human, who then makes the final decision. For such a setup, the human’s 
classification performance would be a key metric, perhaps in comparison to unassisted humans. The 
effectiveness of the combined model/human system could also be measured by the time taken to complete 
the task and the human’s subjective difficulty rating. 

4.3 Additional Issues for Consideration 

Scope: In terms of the NIST AI Risk Management Framework’s taxonomy of trustworthiness characteristics, 
mainstream methods generally test only for whether systems are Valid & Reliable and Safe, Secure & Resilient. 
Testing for additional trustworthiness characteristics, including Fair – With Harmful Bias Managed, Privacy-
Enhanced, Explainable & Interpretable, and Accountable & Transparent, could help address potential harms 
from provenance data tracking and synthetic content detection. 

Context: An evaluation result can be difficult to interpret outside of a particular context of use for a detector. 
For instance, is an AUROC of 0.95 or a TPR@FPR=0.01 of 80% sufficient? What edge cases that are not 
captured by average metrics may be important? What specific kinds of errors, such as false positives or false 
negatives, are particularly harmful? These questions depend heavily on the use case and context, including 
how the system output will feed into decisions and actions and what stakes any resultant decisions or actions 
may have. 

Reproducibility: When evaluations use original data, code, and analysis, it is helpful for independent 
researchers to produce the same or similar results as the original experiment or method. Reproducible tests 
give greater confidence in system reliability assessments and can help prevent potential systematic errors or 
unintended outcomes. Reproducible results can be promoted by sharing comprehensive datasets, human 
scores or reasoning, experimental setups, and open-source tools and code. 

Adversarial testing: Many evaluations measure the quality of techniques with an attack-and-defense setup. In 
such settings, an attempt to measure the quality of defenses may hinge on assumptions about the quality of 
the tested attacks. In some instances, defenses that succeeded against one set of attacks were broken by 
others. Mainstream tests often do not cover the full range of known attacks. 

5 Techniques for Preventing and Reducing Harms from AI-Generated Child Sexual Abuse Material and AI-
Generated Non-Consensual Intimate Imagery 

CSAM and NCII are not new forms of technology-facilitated abuse, but GAI tools can ease production at scale, 
including by actors with limited technical skills, through a variety of vectors. Various freely available tools 
developed by malicious actors—such as face and body swap apps and websites to build image generation 
models commonly trained on non-consensual intimate images—are expanding on the Internet and resulting in 
sextortion, monetization schemes, and the targeting and abuse of women and minors, even as NCII continue 
to be used to stalk, harass, and humiliate victims, including by abusive partners. Even some mainstream AI 
models have been trained on datasets containing confirmed, real CSAM. 

https://arxiv.org/pdf/2304.05011.pdf
https://arxiv.org/pdf/2302.12691.pdf
https://arxiv.org/abs/2206.13991
https://public-assets.graphika.com/reports/graphika-report-a-revealing-picture.pdf
https://www.justice.gov/usao-sdin/pr/fbi-and-partners-issue-national-public-safety-alert-sextortion-schemes
https://cyber.fsi.stanford.edu/news/investigation-finds-ai-image-generation-models-trained-child-abuse
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Editing tools in which authentic images can be manipulated with AI are another way in which AI-generated 
CSAM (AIG-CSAM) and NCII (AIG-NCII)16 are proliferated online. The likenesses of political and public figures 
have been manipulated and generated using AI tools to create NCII, disproportionately targeting women and 
affecting the civic and political participation of women and the health of democracies. 

Such misuses of generative AI tools magnify CSAM- and NCII-related challenges. For instance, identifying and 
protecting victims is more difficult with photorealistic AI-generated CSAM being distributed at scale; the 
prevalence of AI-generated CSAM or NCII involving real people can exacerbate those victims’ trauma; widely 
available models augment malicious actors’ capabilities to target new victims; victims may face additional 
challenges in having such content removed; and prevention is difficult when known CSAM is in AI model 
training datasets. 

This section outlines emerging best practices and potential mitigations for both AIG-CSAM and AIG-NCII, as 
well as considerations when implementing these practices. 

Of note, mitigations may not work equally across all forms of CSAM and NCII. For example, where the 
techniques rely on image classification, they may be more effective for content that contains clear and evident 
nudity, which is easier for current nudity classifiers to detect. Notably, many instances of adult nudity may be 
consensual or not involve real people and thus may not be NCII. 

Another challenge across techniques is that it is generally illegal to attempt to produce, possess, or access 
CSAM, or to actually produce, possess, or access CSAM, which can make it more difficult to develop or test 
mitigation mechanisms. 

5.1 Training Data Filtering 

GAI models are more likely to be able to generate CSAM or NCII if such images are included in their training 
data. For example, the widely used LAION-5B dataset of image/text pairs, assembled from the open Common 
Crawl repository, was found to contain real CSAM. 

Cleaning up datasets before training a model can help reduce the risk of the model generating CSAM or NCII. 
Subject to any applicable legal constraints noted in the opening of this section, this could involve training ML-
based “safety classifiers” using known, vetted CSAM and NCII and any other sexually explicit content; testing 
these classifiers on large datasets to determine precision and recall rates (see Appendix E.1); and using the 
classifiers to identify and remove harmful content in training data. Safety classifiers could draw on more 
general techniques and tools for sexually explicit image detection. Again subject to legal constraints, 
developers could also remove harmful or illegal content from training data by filtering out content from 
websites that are known to host CSAM and NCII, or by curating datasets of malicious website links. Another 
method for reducing CSAM in training data is by training models only on vetted data, such as licensed stock 
images and data in the public domain, though this may be costly for training and may not be sufficient for 
training larger diffusion models. 

5.1.1 Considerations for Training Data Filtering 

When training data is scraped from the Internet, filtering and removing all harmful data can be very 
challenging. Indeed, the LAION-5B developers did attempt to remove sexually explicit and harmful content 
from the dataset, yet some CSAM persisted. No practical automated classifier will have zero error, so 
automated filtering will have to balance the risk of letting through problematic content against the risk of 

 
16 Other vernacular to describe this material is “synthetic CSAM” and “synthetic NCII.” This report uses “AI-generated,” which is more specific and has 

been adopted by practitioners in this space. 

https://www.state.gov/gendered-disinformation-tactics-themes-and-trends-by-foreign-malign-actors/
https://arstechnica.com/tech-policy/2024/01/fake-ai-taylor-swift-images-flood-x-amid-calls-to-criminalize-deepfake-porn/
https://dl.acm.org/doi/pdf/10.1145/3469096.3469867
https://cyber.fsi.stanford.edu/news/investigation-finds-ai-image-generation-models-trained-child-abuse
https://dl.acm.org/doi/pdf/10.1145/3469096.3469867
https://github.com/notAI-tech/NudeNet
https://cyber.fsi.stanford.edu/news/investigation-finds-ai-image-generation-models-trained-child-abuse
https://haas.berkeley.edu/wp-content/uploads/UCB_Playbook_R10_V2_spreads2.pdf
https://arxiv.org/abs/2210.08402
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eliminating too much training data, which would reduce model functionality for benign use cases. Research 
shows large-scale data filtering could have unexpected side effects on model performance and reduce the 
quality of image generation across tasks.  

Automated filters may also need to apply techniques beyond current “not safe for work” filters; research 
indicates that these filters fail to remove some sexually explicit content. 

Human labeling of types and severities of violative content can be helpful both for training automated filters 
and for manual review of specific training samples. Yet even human labels are not infallible: they may be 
biased—for example, one study found that most adults view Black girls between the ages of 5-14 as more 
adult-like than their white peers—and the labels may be somewhat subjective or underdetermined by the 
content. This is particularly true of NCII: consent—the defining feature of NCII—is not typically evident or 
decipherable from the image itself. 

Furthermore, filtering out true CSAM may be insufficient to prevent the creation of CSAM outputs: models 
could combine visual concepts from non-sexual images of children with those from racy or sexual images of 
adults to create sexualized images of children, a capability known as compositional generation. Similarly, 
compositional generation could allow non-consensual sexual images of real adults who appear only fully 
clothed in training data. Such possibilities make it difficult to design policies for what content human labelers 
or automated filters should mark as violative and with what level of severity (e.g., whether and how an image 
of a toddler in a bathing suit would be classified). 

5.2 Input Data Filtering  

In text-to-image models, the prompts users input to a deployed model can be filtered to prevent the 
generation of potentially harmful images. Input data filtering can block AIG-CSAM that a user is intentionally 
attempting to generate through violative or harmful prompts. 

Several companies provide input filtering classifiers that are trained to classify text or images into different 
categories of violative content that a user may try to input or prompt for. This may include classifying the 
degree or type of sexual explicitness in a piece of content, which may range from benign intimate activity (e.g., 
text about two people kissing) to an image containing adult sexually explicit content all the way to AIG-CSAM. 
Similar to the classifiers discussed for training data filtering, these classifiers are contingent on human data 
labels and internal developer or platform content policies to determine what types of content are violative 
and at what severity levels. 

A more simplistic type of input filter used by platforms and developers is a keyword filter, also known as a 
keyword block list—an internally-managed database of violative keywords that, when included in an input 
prompt, prevent the generation of images. This approach identifies known egregious content, such as 
commonly known CSAM terminology or terms used to undress individuals (relevant in products with an image 
upload feature). Keyword blocking is likely to be less helpful for AIG-NCII, given that it is very challenging to 
determine consent. 

A growing area of research is using warning messages within a product aimed to redirect a user looking for 
CSAM content. Warning messages have mainly been applied in the search engine and URL contexts, though 
they could be considered within generative AI tools as well. 

5.2.1 Considerations for Input Data Filtering 

Accuracy and robustness are significant considerations when utilizing input data filtering. Input classifiers are 
not always accurate, in part because they are contingent on robust and nuanced human labels across many 
types of content. As with training data filtering, these labels are complicated by the fact that humans may 

https://proceedings.mlr.press/v162/nichol22a/nichol22a.pdf
https://arxiv.org/pdf/2405.08209
https://haas.berkeley.edu/wp-content/uploads/UCB_Playbook_R10_V2_spreads2.pdf
https://www.law.georgetown.edu/poverty-inequality-center/wp-content/uploads/sites/14/2017/08/girlhood-interrupted.pdf
https://arxiv.org/pdf/2310.09336
https://www.aic.gov.au/sites/default/files/2023-03/ti669_how_to_implement_online_warnings_to_prevent_use_of_csam.pdf
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disagree about what qualifies as violative content. It is also challenging to determine what confidence 
threshold a classifier should use to block content with an adequate balance of false positives and false 
negatives. New patterns of abusive input may also emerge over time, which classifiers or blocking lists would 
need to be updated to reflect. 

Keyword blocking faces additional challenges, particularly for terms that have both harmful and benign 
meanings. Unlike most classifiers, block lists are rigid and unable to account for multiple cues, which can result 
in less nuanced decisions. Malicious actors could also evade keyword blocks and violate content moderation 
policies by adding different characters in between words, using trial and error to find phrases that are not 
blocked, or utilizing visual synonyms to generate explicit imagery.  

When open-source image generation packages include input data filters—which they do less commonly than 
hosted services—these filters can be bypassed more easily. 

5.3 Output Filtering  

If a generated image is deemed harmful or violative, it can be blocked instead of being output. Some AI 
developers implement classifiers trained to detect outputs that should be blocked, although there is limited 
publicly available information on how they are trained and what content they block. 

5.3.1 Considerations for Image Output Filtering 

As with classifiers for training data and model inputs, the effectiveness of output filters may depend on how 
well the training data covers a wide range of sexual content; how well training data is labeled, particularly for 
ambiguous cases; how confidence thresholds for blocking are set; and how changes in malicious actors’ 
behavior are incorporated. 

5.4 Hashing Confirmed AIG-CSAM and AIG-NCII  

Synthetic content identified as AIG-CSAM or AIG-NCII could be hashed (either with cryptographic or 
perceptual hashes) and the hashes stored in shared databases, which would allow multiple platforms, 
websites, or other entities to detect and act on the content if it reappears. This solution will prevent all harms 
of AIG-CSAM and AIG-NCII, but it could reduce the impact and severity of these harms by stymying the 
dissemination of this content and reducing further exposure of those depicted without their consent. Hashes 
associated with AIG-CSAM can be reported to the CyberTipline operated by the National Center for Missing & 
Exploited Children, see Section 5.4.1. 

Cryptographic hashes make use of the “avalanche effect”: they are designed such that even a slight alteration 
to the input data would produce a vastly different cryptographic hash. Cryptographic hashes allow for 
identification of exact matches to a CSAM image that has been logged in a hash-sharing database. Service 
providers and platforms are currently using cryptographic hashing to limit the redistribution of AIG-CSAM and 
AIG-NCII. Given that any perturbation of the content would prevent a match, adversarial evasion can pose a 
challenge. 

Perceptual hash algorithms attempt to output similar hashes for input files that humans perceive as similar. 
This means the hash value stays approximately the same if the content is not significantly changed, such as if 
compression, brightness, orientation, or color are modified. Perceptual hashes have some chance of false 
positives (perceptually different input files with identical or similar hashes) or false negatives (perceptually 
similar inputs with radically different hashes). 

5.4.1 Considerations for Hashing Confirmed AIG-CSAM and AIG-NCII 

Hashing confirmed CSAM and NCII involves addressing coordination, policy, and technical considerations. 

https://www.technologyreview.com/2023/02/24/1069093/ai-image-generator-midjourney-blocks-porn-by-banning-words-about-the-human-reproductive-system/
https://www.bloomberg.com/news/articles/2024-02-09/fighting-deepfakes-whats-being-done-biden-robocalls-to-taylor-swift-ai-images
https://www.theverge.com/2022/9/15/23340673/ai-image-generation-stable-diffusion-explained-ethics-copyright-data
https://arxiv.org/pdf/2210.04610v5
https://arxiv.org/pdf/2210.04610v5
https://ieeexplore.ieee.org/document/9923931
https://www.thorn.org/blog/hashing-detect-child-sex-abuse-imagery/
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-168.pdf
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Coordination across organizations to share this content safely and effectively can be difficult. There are 
established norms and laws about reporting CSAM more broadly. There are also established organizations that 
conduct this work, such as the NCMEC, which has started to include reported AIG-CSAM in its hash database. 
Coordination may require shared ways of describing and classifying abusive content, particularly to enable 
cooperation across different regulatory regimes. To this end, the “Universal Classification Schema,” 
established by an international working group of experts, provides a common set of content classification 
categories (among other elements) for tagging CSAM and sexual exploitation material. Efforts to detect and 
prevent or track dissemination of AIG-CSAM and AIG-NCII are still in the early stages, and may benefit from 
greater coordination between AI developers, social media platforms, messaging platforms, and other Internet 
providers, including (where applicable) reporting content to appropriate law enforcement. 

Policy challenges of understanding context also apply to hashing AI-generated CSAM. In the United States, the 
sexually explicit depiction of minors in images is a felony offense, and AIG-CSAM can be a visual depiction of 
sexually explicit conduct involving a minor. However, hash databases can only be as accurate as the selection 
of images sent to them and how they have been classified, which is subject to reporting practices. There is 
currently imperfect clarity on how existing reporting and classification practices should be applied to 
ambiguous cases such as fully synthetic images that show a young person of indeterminate age or engaged in 
conduct whose explicitness is open to interpretation. 

It is similarly challenging to determine whether a given synthetically generated or modified image was NCII or 
not. This is currently done mainly through tags created by victims themselves; StopNCII.org is one example. It 
is difficult to adjudicate consent for widely-used GAI tools unless the tool itself is malicious and trained on 
authentic images of people, and consent is also difficult to discern on social media platforms. Consent may 
also be limited to particular contexts; for example, there could be consent for the use of a person’s image to 
create a new GAI image but not for the distribution of that image. Human vetting currently remains a 
requirement for accurate labeling, which also takes a toll on the mental health of reviewers. Lastly, hashing is 
binary: inclusion in a hash database asserts that the content is CSAM or NCII, but it does not provide further 
indicators for context, which may be important to labeling and assigning severity levels for hashed content. 

It is also important to note the technical limitations of hashing, both perceptual and cryptographic. 
Cryptographic hashes can have “collisions,” in which multiple unrelated inputs hash to the same value. Bad 
actors could circumvent perceptual hashes by modifying an image in a manner that is not distinguishable from 
legitimate or benign distortions (such as compression), thus affecting the integrity of tracking the original 
image. Perceptual hashing can also allow significant data leakage: for some hashes, AI models can be built to 
reconstruct images from their perceptual hashes. This could further endanger victims of CSAM and NCII and 
infringe on their privacy, particularly if databases are not well-secured. 

5.5 Provenance Data Tracking Techniques for AIG-CSAM and AIG-NCII 

Provenance data tracking techniques for synthetic content, such as digital watermarks and metadata 
recording, could potentially be used to reduce AIG-CSAM and AIG-NCII harms. Malicious actors who create 
AIG-CSAM and AIG-NCII might find tools less appealing for exploitation if those tools embed a watermark that 
shows an image is AI-generated or add metadata about the image’s origins. These techniques could debunk 
claims that the image is authentic, although even images known to be inauthentic may impose harms if they 
depict real people. 

Provenance data tracking may help to identify and track AIG-CSAM and AIG-NCII, distinguish authentic 
imagery that presumably shows real victims, and understand patterns of misuse of GAI tools. These benefits 
would be most likely to apply when content is generated and disseminated by less sophisticated actors who 

https://inhope.org/EN/articles/what-is-the-universal-classification-schema
https://stopncii.org/
https://www.404media.co/inside-the-ai-porn-marketplace-where-everything-and-everyone-is-for-sale/
https://stacks.stanford.edu/file/druid:jd797tp7663/20230606-sio-sg-csam-report.pdf
https://www.missingkids.org/gethelpnow/cybertipline/cybertiplinedata
https://www.sciencedirect.com/science/article/pii/S0923596518305332
https://www.usenix.org/system/files/sec23summer_146-prokos-prepub.pdf
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do not strategically use tools without provenance data tracking techniques, or by actors who are not aware of 
methods to remove watermarks or metadata. 

5.5.1 Considerations for Provenance Data Tracking Techniques for AIG-CSAM and AIG-NCII 

When using provenance data tracking techniques for AI-generated CSAM and NCII, it is important to consider 
uncertainties about efficacy, robustness, and potential for adversarial misuse. 

There is a lack of research and evidence about whether and how provenance labels are effective in reducing 
harms from AI-generated CSAM and NCII. Survivors and victims whose images are altered without their 
consent through AI experience harm, humiliation, and degradation regardless of whether the content has 
overt labels and metadata attached to it.  

In addition, all the issues discussed in Section 3.1 apply to data provenance tracking for AIG-CSAM and AIG-
NCII. Malicious actors generating this content on the Internet often use freely available models or build their 
own smaller models based on existing open-source code, from which they can easily remove safeguards. If 
they do use tools that track provenance, robustness issues remain: covert and overt watermarks can often be 
removed from digital content, and embedded metadata could be stripped. Unless techniques can be designed 
to make the models themselves irreversibly output pre-watermarked images, it will be difficult for provenance 
data tracking approaches to add barriers that cannot be removed relatively easily. 

In addition, malicious actors could attempt to make real CSAM less likely to be investigated, or make its 
victims less likely to be identified, by applying metadata or watermarks that suggest the content is AI-
generated. 

5.6 Red-Teaming and Testing for CSAM and NCII 

Further safeguards could be provided by red-teaming and testing of GAI systems for the capability to create 
AI-generated CSAM and NCII across the development process and prior to the deployment of GAI systems. 
Executive Order 14110 on Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence refers 
to red-teaming as a “structured testing effort to find flaws and vulnerabilities in an AI system, often in a 
controlled environment and in collaboration with developers of AI.” One minimal way to do this is to scan the 
Internet and internal systems for known prompts used in attempts to generate AIG-CSAM and AIG-NCII and 
seeing how systems respond to these prompts. Developers of AI tools can thus develop initial assessments of 
a model’s propensity to generate this content and build upon these assessments, aiming to prevent queries 
that yield abusive content from doing so in future iterations of the model or system. Furthermore, red teams 
focusing on finding exploits could be paired with “blue teams,” who work on building defensive measures to 
prevent and/or address misuse. An established protocol or set of guidelines for red-teaming for AIG-CSAM and 
AIG-NCII could assist with measuring models’ safety with respect to such content. 

5.6.1 Considerations for Red-Teaming and Testing for CSAM and NCII 

Red-teaming and testing can detect problems, but they alone cannot change models’ behavior; that may 
depend on altering the training data or other system components. These methods are also biased towards 
testing known vulnerabilities within an AI system. By probing the model with known prompts that are already 
established as harmful and/or capable of creating AI-generated CSAM or NCII, a developer may not have 
coverage of new adversarial prompts that could bypass model safeguards. Furthermore, red-teaming is a 
resource-intensive process; smaller developers may not have the resources to invest in red-teaming. Finally, 
conducting red-teaming to determine whether a model can generate AIG-CSAM and AIG-NCII may result in the 
generation of CSAM, which may cause legal barriers and complexities for providers, depending on applicable 
laws. There is currently no legal immunity for companies on red-teaming models for AI-generated CSAM. A 
potential way to address legal complexities is by leveraging “compositional generation”: if a model is able to 

https://www.wired.com/story/generative-ai-images-child-sexual-abuse/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
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generate both adult sexual content and photorealistic images of children, and it shows strong abilities to 
combine other visual concepts, it may be able to generate photorealistic sexual images of children. The extent 
to which this is true and can be relied upon for testing purposes is still an area of ongoing research. 

Opportunities for Further Development 

More research and development are needed for: 

● Assessments of the impact of applicable laws on red-teaming and other techniques to 
prevent the production of AIG-CSAM and AIG-NCII. 

● Designing effective red-teaming strategies to catch AI-generated CSAM and NCII outputs. 
● Determining the effectiveness of provenance data tracking techniques on this content in 

reducing harm. 
● Designing classifiers and filters to remove CSAM and NCII from training data as well as at 

the model input and output levels. 
● Building automated and scalable assessments of models to determine their capability to 

generate CSAM or NCII. 
● Developing coordination between civil society, industry, law enforcement, and other 

relevant entities to produce and share hashes of AIG-CSAM and AIG-NCII and to establish 
methods for effectively testing mitigation techniques. 

● Building shared databases of hashes of known AIG-CSAM and AIG-NCII, as well as of URLs 
or other identifiers for known models that were built for generating such content, to 
facilitate the removal of these images and models across platforms, including social media 
platforms, search engines, and platforms that host AI models.  

● Examining the viability of privacy-preserving perceptual hashing. 
● Exploring methods to take the burden of proof for taking down AIG-NCII off of victims, and 

to notify victims when their privacy has been compromised. 
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6 Application of Concepts to the NIST AI Risk Management Framework Lifecycle  

The NIST AI Risk Management Framework (AI RMF) states, “Measuring risk at an earlier stage in the AI lifecycle 
may yield different results than measuring risk at a later stage; some risks may be latent at a given point in 
time and may increase as AI systems adapt and evolve.” Different AI actors across the AI lifecycle, shown in 
Figure 3, will often have different risk perspectives and may find certain provenance data tracking or synthetic 
content detection techniques more useful contingent on use case, product, and organizational goals.  

Below are selected ways the techniques discussed in this report may be applicable during different lifecycle 
stages: 

● Data & Input—Collect and Process Data: The responsible collection and filtering of training data in 
this phase could help reduce and/or prevent harms from synthetic CSAM and NCII outputs. In this 
phase, data and input needed to build tools to watermark or detect synthetic content can also be 
collected, along with data for evaluating watermarking, metadata recording, synthetic content 
detection, and harmful content classification tools. 

● AI Model—Build and Use Model, Verify and Validate: During these phases, provenance data tracking 
techniques such as metadata or watermarks can be proactively added to model outputs at the time of 
generation. The effectiveness of such techniques should be verified before deployment. Mitigation 
mechanisms that prevent the creation of synthetic CSAM and NCII (as discussed in previous sections) 
may be proactively applied during the model-building phase. 

Figure 3: AI actors across AI lifecycle stages (from the NIST AI RMF 1.0). 

https://www.nist.gov/itl/ai-risk-management-framework
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● Task and Output—Deploy and Use: Digital content transparency efforts are enhanced by establishing 
mechanisms for collecting a diverse set of user feedback. This is especially true for feedback on cases 
of false positives (e.g., authentic content flagged as AI-generated, or benign content flagged as 
harmful) or false negatives (e.g., AI-generated content that was not flagged). The measurements and 
metrics used are highly dependent on the use case, context, and systems being tested. 

● Application Context—Operate and Monitor: The broader impact of digital content transparency 
approaches may be examined during the operate and monitor phase of the AI lifecycle considering 
objectives, legal and regulatory requirements, and ethical considerations.  

● People and Planet—Use or Impacted By: By sharing the results from TEVV conducted across the AI 
lifecycle with representative actors such as AI developers, civil society entities, and end users, 
potential harms and effective mitigations can be explored. 

7 Conclusion 

Each of the digital content transparency approaches described in this report holds the promise of helping to 
improve trust by clearly and readily indicating where AI techniques have been used to generate or modify 
digital content. Yet each has important limitations that are both technical and social in nature. Note that 
none of these techniques can be considered as a comprehensive solution; the value of any given technique is 
use-case and context specific. For digital content transparency to succeed, provenance data tracking and 

Figure 4: Digital content transparency approaches across the AI lifecycle described in NIST AI 
RMF. 
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synthetic content detection approaches must be applied in tandem with social efforts and initiatives. The 
same is true of technical methods for preventing and reducing harms from AIG-CSAM and AIG-NCII. 

Adoption of effective digital content transparency approaches will depend on collaboration and coordination 
across the content value chain, as well as consideration of social factors. Such coordination will likely need to 
include science-backed global standards, which some of the techniques cited in this report may feed into.  

While there is no silver bullet to solve the issue of public trust in and safety concerns posed by digital content, 
the consideration of the various approaches for provenance data tracking and synthetic content detection 
across different modalities of content is important, and research on these approaches can be developed 
further. This report is a resource to promote understanding and help lay the groundwork for the development 
of additional, improved technical approaches to advancing synthetic content provenance, detection, labeling, 
and authentication.  
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Appendix A. Current Standards  

A.1. Synthetic Content Standards and Guidelines 

There are various hardware, software, and risk management standards for AI systems that are pertinent to 
digital content transparency. The table below provides a non-exhaustive list; additional standards specific to 
metadata are noted in Appendix A.3. 

Standard Domain Purpose Organization(s) 

ISO/IEC 38505-
1:2017 

Governance of 
data 

 

Evaluating, directing, and 
monitoring the handling and use of 
data in organizations. 

International 
Organization for 
Standardization 
(ISO) and the 
International 
Electrotechnical 
Commission (IEC) 

ISO/IEC 
23894:2023 

AI risk 
management 

Integrating risk management into 
AI-related activities and functions. 

ISO and IEC 

ISO/IEC JTC 1/SC 
29 

Audio, picture, 
multimedia, and 
hypermedia 

Coding of digital information such as 
multimedia, environment, and user-
related metadata, media security, 
privacy management, source 
authentication, and integrity 
verification.  

ISO and IEC 

 ISO/IEC 2022:2021 

Information 
security 
management 
systems 

Measuring a software product based 
on internal security, reliability, 
performance efficiency, and 
maintainability.  

ISO and IEC 

ISO/IEC/IEEE 
29119  

Software testing 

 

Testing across the AI lifecycle and 
for black box systems, which are 
directly useful in the context of GAI 
systems.  

ISO, IEC, and the 
IEEE 

ISO/IEC 
22989:2022 

AI concepts and 
terminology 

Establishing terminology for AI and 
describing concepts in the field of 
AI. 

ISO and IEC 

ISO/IEC 
42001:2023 

AI—Management 
system 

Specifying requirements for 
establishing, implementing, 
maintaining, and continually 

ISO and IEC 

https://www.iso.org/obp/ui/#iso:std:iso-iec:38505:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:38505:-1:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:23894:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:23894:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:23894:ed-1:v1:en
https://www.iso.org/committee/45316.html
https://www.iso.org/committee/45316.html
https://www.iso.org/committee/45316.html
https://www.iso.org/standard/27001
https://www.iso.org/standard/27001
https://www.iso.org/standard/81291.html
https://www.iso.org/standard/81291.html
https://www.iso.org/standard/81291.html
https://www.iso.org/standard/74296.html
https://www.iso.org/standard/74296.html
https://www.iso.org/standard/74296.html
https://www.iso.org/standard/81230.html
https://www.iso.org/standard/81230.html
https://www.iso.org/standard/81230.html
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 improving an Artificial Intelligence 
Management System within 
organizations. 

ISO/IEC TR 
24027:2021 

Bias in AI systems 
and AI-aided 
decision making 

 Describing measurement 
techniques and methods for 
assessing bias, with the aim to 
address and treat bias-related 
vulnerabilities. 

ISO and IEC 

ISO/IEC TS 
4213:2022  

Assessment of 
machine learning 
classification 
performance 

Specifying methodologies for 
measuring classification 
performance of machine learning 
models, systems, and algorithms. 

ISO and IEC 

SMPTE 2112-10 

Open Binding of 
Content 

Identifiers 
standard 

 

Describes a method of binding 
content identifiers to media, 
utilizing audio watermarking, 
allowing the content to be identified 
both electronically and acoustically 

Society of Motion 
Picture and 
Television 
Engineers (SMPTE) 
Technology 
Committee on 
Television and 
Broadband 

ATSC A/334 
Audio 
Watermarking 

Specifies the VP1 audio watermark 
for use with systems conforming to 
the ATSC 3.0 family of specifications 
and the format in which the audio 
watermark resides in a PCM audio 
signal 

Advanced 
Television Systems 
Committee (ATSC) 

 

ATSC A/335 
Video 
Watermarking 

Describes a video watermarking 
technology to robustly embed 
ancillary data in the transmitted 
pixels of a video signal 

ATSC 

ATSC A/336 
Audio/Visual 
Watermarks 

Enables use of watermarks for 
publication and retrieval of timed 
metadata from network servers in 
service of authentication. 

ATSC 

https://www.iso.org/standard/77607.html
https://www.iso.org/standard/77607.html
https://www.iso.org/standard/77607.html
https://www.iso.org/standard/79799.html
https://www.iso.org/standard/79799.html
https://www.iso.org/standard/79799.html
https://ieeexplore.ieee.org/document/9264808/media#media
https://www.atsc.org/atsc-documents/a3342016-audio-watermark-emission/
https://www.atsc.org/atsc-documents/a3352016-video-watermark-emission/
https://www.atsc.org/atsc-documents/a3362017-content-recovery-redistribution-scenarios/
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A.2. Selected NIST Practices and Guidelines 

NIST’s past work in the realms of AI, privacy, and cybersecurity is useful with regard to some digital content 
transparency methods. Selected guidelines are noted below.  

Framework Description 

NIST AI Risk Management 
Framework (AI RMF) 

Foundation for what organizations should do to manage risk for AI 
systems. 

NIST AI RMF Playbook Foundation for how to implement the NIST AI RMF. 

AI RMF Core Outcomes and actions that enable dialogue, understanding, and 
activities to manage AI risks and responsibly develop trustworthy AI 
systems. 

NIST AI RMF Generative AI 
Profile 

Profile of the AI RMF elaborating risks unique to or exacerbated by 
generative AI and how to apply the AI RMF to manage them. 

Security and Privacy Controls 
for Information Systems and 
Organizations 

A catalog of security and privacy controls for information systems and 
organizations to protect organizational operations and assets, 
individuals, other organizations, and the Nation from a diverse set of 
threats and risks. 

Digital Identity Guidelines  

and 2022 Initial Public Draft 
(IPD) for Digital Identity 
Guidelines 

Technical requirements for federal agencies implementing digital 
identity services. The 2022 Initial Public Draft (IPD) for Digital Identity 
Guidelines enhances fraud prevention measures from previous 
versions. 

Privacy Framework  A tool for improving privacy through enterprise risk management. 

A.3. Metadata Standards 

EXIF (Exchangeable Image File Format) Metadata: A standard that specifies the formats for images, sound, 
and ancillary tags used by digital cameras (including smartphones), scanners, and other systems. EXIF data 
includes details about the camera model used, shutter speed, the creation date, and location information. 

IPTC (International Press Telecommunications Council) Metadata: A standard for exchanging metadata in 
images, particularly those used in journalism. It includes fields for information such as captions, keywords, 
location, and copyright. It has been updated to include AI-specific digital source types. 

XMP (Extensible Metadata Platform) Metadata: An ISO standard, originally created by Adobe Systems Inc., 
for the creation, processing, and interchange of standardized and custom metadata for digital documents 
(e.g., images, videos, PDFs). 

https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://airc.nist.gov/AI_RMF_Knowledge_Base/Playbook
https://airc.nist.gov/AI_RMF_Knowledge_Base/AI_RMF/Core_And_Profiles/5-sec-core
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-4.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-4.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-4.ipd.pdf
https://www.nist.gov/system/files/documents/2020/01/16/NIST%20Privacy%20Framework_V1.0.pdf
https://www.jeita.or.jp/japanese/standard/book/CP-3451E_E/
https://iptc.org/std/photometadata/specification/IPTC-PhotoMetadata
https://www.iso.org/standard/75163.html
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ANSI/NISO Z39.87-2006 (R2017) Data Dictionary - Technical Metadata for Digital Still Images: Defines a set 
of metadata elements for raster digital images to enable users to develop, exchange, and interpret digital 
image files. The dictionary has been designed to facilitate interoperability between systems, services, and 
software, as well as to support the long-term management of and continuing access to digital image 
collections. 

textMD: An XML Schema that details technical metadata for text-based digital objects. It most commonly 
serves as an extension schema used within the Metadata Encoding and Transmission Schema administrative 
metadata section. However, it could also exist as a standalone document. While textMD is attached to text 
files, individual document pages may additionally be defined as distinct objects with their own metadata. 

ISO/IEC 11179 Metadata Registry: A standard for the management of metadata registries, designed to ensure 
interoperability across different systems. 

Dublin Core Metadata Initiative: A digital metadata standard offering a straightforward and adaptable set of 
metadata elements, which can be utilized to characterize different kinds of digital resources. Titles, creators, 
subjects, descriptions, dates, formats, and identifiers are among the elements it provides.  

Metadata Object Description Schema: An XML-based metadata system created by the Library of Congress. It 
offers specific elements for various content types, including music, photos, videos, documents, and maps, 
enabling a more detailed description of resources. Furthermore, it facilitates the encoding of intricate 
relationships among resources, making it possible to depict collections, series, or hierarchical organizations.  

The Metadata Encoding and Transmission Standard: A standard expressed in XML for encoding descriptive, 
administrative, and structural metadata regarding objects within a digital library that provides the means to 
convey the metadata necessary for both the management of digital objects within a repository and the 
exchange of such objects between repositories (or between repositories and their users). 

https://www.niso.org/publications/ansiniso-z3987-2006-r2017-data-dictionary-technical-metadata-digital-still-images
https://www.loc.gov/standards/textMD/
https://www.loc.gov/standards/mets/
https://www.loc.gov/standards/mets/METSOverview.v2.html#admMD
https://www.loc.gov/standards/mets/METSOverview.v2.html#admMD
https://www.iso.org/standard/78914.html
https://www.iso.org/standard/78914.html
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.loc.gov/standards/mods/
https://www.loc.gov/standards/mets/mets-home.html
https://www.loc.gov/standards/mets/mets-home.html
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Appendix B. Technical Tools 

Selected technical tools related to digital content transparency. See disclaimer on page 3. 

Tool Name Domain Modality Description 

ActiveFence Detection Text 

Image 

Video 

Audio 

AI content detection tool 
for moderation and abuse 
detection 

AISEO Detection Text Identify human text and AI-
generated text 

Attestiv Detection Image 

Video 

Documents 

Media validation and fraud 
detection 

AudioSeal Watermarking Audio Machine learning-based 
watermarking of generated 
speech, designed for 
efficiency 

Azure AI Content Safety Content Moderation Text 

Image 

Detects harmful user-
generated and AI-generated 
content in applications and 
services 

Content Authenticity 
Initiative Signing Toolkit 

Metadata Image 

Video 

Audio 

Documents 

Tool for content 
authenticity and 
provenance 

Content Credentials Display 
Library 

Metadata Image  

Video 

Audio 

Tool for content 
authenticity and 
provenance 

Content Credentials verifier 
tool 

Authentication Image 

Video 

Inspect and verifies the 
content credentials of a 
digital content 

https://www.activefence.com/
https://aiseo.ai/AI-tools/ai-content-detection.html
https://attestiv.com/
https://github.com/facebookresearch/audioseal
https://ai.azure.com/explore/contentsafety
https://truepic.com/c2pa-signing/
https://truepic.com/c2pa-signing/
https://contentcredentials.org/verify
https://contentcredentials.org/verify
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Tool Name Domain Modality Description 

Audio 

Copyleaks Detection Text 

Source Code 

Detect AI-generated 
content including source 
code plagiarism 

CSAI Match CSAM Video Detects CSAM videos 

eGLYPH Harmful Content Audio 

Image 

Video 

Alerting system to social 
media platforms 

FakeNet AI Detection Video Detects synthetic media 

GIFCT Harmful Content Image 

Video 

Shared hashing database to 
identify terrorism materials 

Google Deepmind SynthID Watermarking Image 

Audio 

Tool for watermarking and 
identifying AI-generated 
content 

Google reverse image 
search 

Retrieval Image Search and retrieves 
perceptual similar images 
including image source  

GPTzero Detection Text Detect AI-generated text 

HIVE Classification APIs Detection Images 

Text 

Identify AI-generated or 
modified images and text 

Imatag Watermarking Image 

Video 

Digital watermarking to 
embed secure and robust 
invisible watermarks during 
the image generation 
process 

NeuralHash CSAM Image Detects CSAM on client 
devices 

https://copyleaks.com/
https://www.youtube.com/csai-match
https://www.counterextremism.com/video/how-ceps-eglyph-technology-works
https://www.fakenetai.com/
https://gifct.org/
https://deepmind.google/technologies/synthid/
http://images.google.com/
http://images.google.com/
https://gptzero.me/
https://thehive.ai/apis/ai-generated-content-classification
https://www.imatag.com/
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
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Tool Name Domain Modality Description 

PDQ 

TMK+PDQF 

CSAM Image 

Video 

Detects CSAM content 

PhotoDNA CSAM Image 

Video 

Detects CSAM content 

Photoguard AI modification 
prevention 

Image Prevents unauthorized 
image manipulation 

Pindrop Pulse Detection Audio 

Video 

Real-time detection and 
forensic analysis of audio 
visual synthetic content 

RADAR Detection Text A framework for AI-
generated text 

Reality Defender Detection Text 

Image 

Video 

Audio 

Detect deepfakes and 
generative content 

Resemble AI Detection Audio Detect AI-generated audio 
and deepfakes 

SAFE Watermarking Digital assets digital watermark 
embedding and detection 
tool for digital assets 

Sensity Detection Image 

Video 

Detect Deepfake images 
and videos 

Serelay Metadata Image 

Video 

Verify authenticity of 
captured images/videos 

Steg.AI Watermarking Image 

Video 

Documents 

Secures and authenticate 
digital assets using forensic 
watermarks 

https://about.fb.com/news/2019/08/open-source-photo-video-matching/
https://raw.githubusercontent.com/facebook/ThreatExchange/main/hashing/hashing.pdf
https://www.microsoft.com/en-us/photodna
https://github.com/MadryLab/photoguard
https://www.pindrop.com/products/pindrop-pulse
https://radar.vizhub.ai/
https://realitydefender.com/
https://www.resemble.ai/
https://www.digimarc.com/press-releases/2024/01/04/digimarc-offers-free-digital-watermark-embedding-and-detection-tools#:~:text=SAFE%E2%84%A2%20digital%20watermarks%20can%20communicate%20content%20provenance%2C%20authenticity%2C,internet%2C%20digital%20watermarks%20must%20have%20five%20specific%20characteristics.
https://sensity.ai/deepfake-detection/
https://www.serelay.com/our-products/console-api-sdk/
https://steg.ai/
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Tool Name Domain Modality Description 

Thorn CSAM Text 

Image 

Video 

Detects known and 
unknown CSAM and 
recognizes text-based 
conversations that could 
lead to child exploitation 

TinEye Retrieval Image Search and retrieves 
perceptual similar images 
including image source  

Truepic Lens Metadata Image 

Video 

Mobile camera SDK 
powered with C2PA 
standard 

Trufo Watermarking, 
metadata, and 
detection 

Image 

Video 

Audio 

Identify synthetic content 
and apply watermarking 
and authentication to 
various modalities 

Turnitin Detection Text Detect AI-generated text; 
specialized for student 
writing 

VIDA Metadata Image 

Video 

Audio 

Text 

Tool for adding digital 
signatures to arbitrary 
media files or structured 
documents 

WinstonAI Detection Text AI content detection tool 
for text generated by LLMs 

ZeroGPT Detection Text AI content detection tool 
for text generated by LLMs 

ZIRCON Watermarking Internet of 
Things (IOT) 

a novel zero-watermarking 
approach to establish end-
to-end data trustworthiness 
in an IoT network 

https://www.thorn.org/
http://tineye.com/
https://truepic.com/truepic-lens/
https://www.trufo.ai/
https://www.turnitin.com/
https://signvida.com/?about
https://gowinston.ai/
https://www.zerogpt.com/
https://arxiv.org/abs/2305.00266
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Appendix C. Provenance Data Tracking 

C.1. Example Digital Watermark Use Cases 

Steganography: Covert watermarking can be used to conceal or hide a message (text, file, image, or video) 
into another piece of digital content.  

Copyright protection: Watermarking has been used to protect digital media content, such as images, audio, 
and video, from unauthorized use or distribution by embedding ownership or copyright information. This may 
discourage piracy and unauthorized distribution, either because the content can be detected as belonging to 
someone else or because an overt watermark renders the content unusable. Watermarks have also been 
applied by global news organizations to track and monitor the distribution of digital media content across 
channels or platforms, with the goal of fighting copyright infringement. 

Digital content transparency: Watermarking can be used to convey information about the origins of digital 
content. 

C.2. Current Provenance-Related Initiatives 

Framework Description Techniques Discussed Type 

Coalition for 
Content 
Provenance and 
Authenticity 
(C2PA)  

The C2PA framework is 
an interoperable 
specification that 
“enables the authors of 
provenance data to 
securely bind statements 
of provenance data to 
instances of content 
using their unique 
credentials” 

Metadata embedding 

Digital signatures 

Watermarks 

Digital fingerprinting 

Framework 

The Starling 
Framework for 
Data Integrity 

A set of tools and 
principles utilizing Web3 
technology in order to 
store, capture, and verify 
content. The framework 
has also utilized the C2Pa 
specification. 

- Blockchain/Web3 

- Digital fingerprinting  

- Embedded metadata 

Framework 

The Numbers 
Protocol 

“Numbers Protocol is the 
Decentralized 
Provenance Standard. It 
secures digital media 
provenance through a 
decentralized ecosystem 
and blockchain 

- Blockchain/Web3 

- Digital fingerprinting  

- Embedded metadata 

Framework 

https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://c2pa.org/specifications/specifications/1.0/guidance/Guidance.html
https://www.starlinglab.org/image-authentication/
https://www.starlinglab.org/image-authentication/
https://www.starlinglab.org/image-authentication/
https://docs.numbersprotocol.io/introduction/numbers-protocol
https://docs.numbersprotocol.io/introduction/numbers-protocol
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technology.” It utilizes 
existing standards such 
as the IPTC and C2PA 
framework as well. 

Interoperable 
Digital Media 
Indexing 

A method to record, 
discover and retrieve 
digital media on 
Ethereum Virtual 
Machine-compatible 
blockchains. 

- Blockchain  

- Digital fingerprinting  

 

Method  

Partnership on 
AI’s Responsible 
Practices for 
Synthetic Media  

Responsible practices 
and recommendations 
regarding synthetic 
media for three 
stakeholders: builders, 
creators, and distributors 
/ publishers. Core 
concepts are consent, 
disclosure, and 
transparency. 

- Watermarking  

- Embedded metadata  

 

Best Practices  

Swear 
Framework 

The patented framework 
fingerprints and maps 

digital media within a 
Web3.0 blockchain 
network. Every pixel and 
soundbite are protected 
and authenticated. 

- Blockchain  

- Digital fingerprinting 

- Metadata 

- Watermarking 

Framework 

https://eips.ethereum.org/EIPS/eip-7053
https://eips.ethereum.org/EIPS/eip-7053
https://eips.ethereum.org/EIPS/eip-7053
https://syntheticmedia.partnershiponai.org/
https://syntheticmedia.partnershiponai.org/
https://syntheticmedia.partnershiponai.org/
https://syntheticmedia.partnershiponai.org/
https://swear.com/a/
https://swear.com/a/
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Appendix D. Synthetic Content Detection 

D.1. Synthetic Image Detection Datasets 

The datasets below are popular detection datasets for synthetic images with the real-fake size which 
categorizes image content as general, face, and art. 

Dataset 
Image 
Content 

(Generator 
Category) Public  

Availability 
Real Images Fake Images 

GAN Diffusion 

UADFV Face ✓ x x 241 252 

FakeSpotter  Face ✓ x x 6,000 5,000 

DFFD  Face ✓ x ✓ 58,703 240,336 

APFDD  Face ✓ x x 5,000 5,000 

ForgeryNet  Face ✓ x ✓ 1,438,201 1,457,861 

DeepArt Art x ✓ ✓ 64,479 73,411 

CNNSpot  General ✓ x ✓ 362,000 362,000 

IEEE VIP Cup  General ✓ ✓ x 7,000 7,000 

DE-FAKE  General x ✓ x 20,000 60,000 

CiFAKE  General x ✓ ✓ 60,000 60,000 

GenImage General ✓ ✓ ✓ 1,331,167 1,350,000 

GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image, Table 1  

D.2. Synthetic Video Detection Datasets 

There are various deepfake detection datasets used in numerous studies for training and testing purposes. 
Deepfake detection datasets have enabled rapid advances in the field. However, there is a limit to those 

https://arxiv.org/abs/2306.08571
https://arxiv.org/pdf/2306.08571
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9721302
https://arxiv.org/abs/2103.00484
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datasets: Authentic videos in these datasets are filmed with volunteer actors in limited scenes, while synthetic 
videos are created by researchers using a few deepfake tools available. 

D.3. Synthetic Video (Deepfakes) Detection Methods and Results 

The tables below summarize the results of recent deepfake detection methods based on machine learning and 
deep learning. 

 

https://www.mdpi.com/2313-433X/9/1/18
https://arxiv.org/pdf/2103.00484.pdf
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Deepfake Detection: A Systematic Literature Review, Table 6 

 

 

Deepfake Detection: A Systematic Literature Review, Table 6 continued 

 

Deepfake Detection: A Systematic Literature Review, Table 9 

 

 

https://doi.org/10.1109/ACCESS.2022.3154404
https://doi.org/10.1109/ACCESS.2022.3154404
https://doi.org/10.1109/ACCESS.2022.3154404
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A survey on deepfake video detection datasets, Table 3 

D.4. Synthetic Text Detection Methods Summary 

 

A Survey on LLM-generated Text Detection: Necessity, Methods, and Future Directions, Figure 4 

 

https://www.researchgate.net/publication/374142887_A_survey_on_deepfake_video_detection_datasets
http://arxiv.org/abs/2310.14724
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D.5. Benchmark Datasets for LLMs-generated Text Detection  

Synthetic text datasets support the detection of synthetic text content due to their ground truth labels. For 
example, one dataset focuses on detecting AI-generated text using LLMs trained on a vast amount of text and 
code, while the other dataset is designed for long-form text and essays, containing samples of both human 
and AI-generated text from various language models. Studies (Wu J. et al, Tables 5 and 6 and Yang et al, Table 
1) summarizes popular benchmark datasets for LLM-generated text detection. Various benchmark text 
corpora include synthetic and human text datasets from different domains, such as finance, medicine, news 
articles, web, and academic-related writings to support detection. 

D.6.  Synthetic Audio Detection Methods Summary 

Different methods for detecting synthetic audio can vary based on their intended use cases. For instance, the 
methods used to detect synthetic voices in media content or forensic tools may be different from those used 
in call centers that require real-time, in-line detection tools. Below is a summary of some recent audio 
deepfake detection methods as an example. 

 A 
Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions, Table 1. 

 

https://www.kaggle.com/competitions/llm-detect-ai-generated-text
https://www.kaggle.com/competitions/llm-detect-ai-generated-text
https://huggingface.co/datasets/artem9k/ai-text-detection-pile
http://arxiv.org/abs/2310.14724
https://arxiv.org/pdf/2310.15654.pdf
https://doi.org/10.3390/a15050155
https://doi.org/10.3390/a15050155
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 A 
Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions, Table 1 continued. 

 

 A 
Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions, Table 1 continued. 

D.7. Synthetic Audio Detection Datasets and Results Summary 

 

The table below summarizes some recent datasets for evaluating synthetic audio detection methods. These 
datasets include various language speakers and use a neural voice cloning tool. The dataset that has been 
created can be used in the detection model to identify both imitation-based and synthetic-based audios with 

https://doi.org/10.3390/a15050155
https://doi.org/10.3390/a15050155
https://doi.org/10.3390/a15050155
https://doi.org/10.3390/a15050155
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minimal preprocessing and training time. However, it is still necessary to create a new dataset to further 
enhance the detection of synthetic audio. 

 A 
Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions, Table 2. 

 

 A 
Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions, Table 3. 

https://doi.org/10.3390/a15050155
https://doi.org/10.3390/a15050155
https://doi.org/10.3390/a15050155
https://doi.org/10.3390/a15050155
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 A 
Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions, Table 3 continued. 

https://doi.org/10.3390/a15050155
https://doi.org/10.3390/a15050155
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Appendix E. Testing and Evaluation 

E.1. Background: Common Experimental Setup and Metrics 

Many of the experiments testing synthetic content detection techniques have a common design that is well-
established in the supervised classification literature. These experiments require a test or evaluation dataset 
of media (e.g., images, text segments, audio segments, or video segments) where each example is labeled as 
“positive” (e.g., watermarked or synthetic) or “negative.” The experiment provides a series of either single 
pieces of content or pairs of pieces of content to the classifier system under test. When the input is a single 
content piece, the system will be asked to say how likely it is that that content is of the positive class. The 
answer is often expressed as a probability—a real number between 0 and 1, where 0 means definitely in the 
negative class and 1 means definitely in the positive class. When the input is a pair of pieces of content, the 
system will be given two samples and asked which one is the positive and which is the negative, again typically 
expressed as a probability (this time that the first one is the positive one). 

The system’s outputs can then be scored relative to the ground truth labels using a wide variety of 
classification metrics. Many of these scores require treating the classifier output as a “hard” classification, i.e., 
a definitive positive-vs.-negative determination. To convert the probabilities that most classifiers output into 
such a determination, it is common to simply pick a threshold (e.g., 0.5) and treat any probability above that 
as a positive output and anything below it as negative. Metrics that require such a threshold include: 

● Accuracy: The fraction of system outputs that were correct. This metric is simple, but can be heavily 
skewed by class imbalance (i.e., if there are uneven numbers of positive and negative examples in the 
evaluation dataset). 

● Precision: Of the instances where the system output a positive label, the fraction of instances for 
which that label was correct. 

● Recall: The fraction of positive instances for which the system output a positive label. 

● F1 score: A balance between precision and recall (technically, their harmonic mean). 

Other metrics account more flexibly for the classifier’s probability score, aggregating over different possible 
thresholds to account for how well the classifier could work in a variety of settings. Such metrics can be based 
on: 

● Receiver operating characteristic (ROC) curve: A plot of recall vs. false positive rate as the threshold 
for classification is varied. The ROC visualizes how a given classifier allows trading off avoiding false 
positives against maximizing true positives. 

● Detection Error Tradeoff curve: An alternative to ROC that plots false positives against false negatives 
for different threshold values. 

From these curves, it is possible to compute summary metrics such as: 

● AUC or AUROC for ROC: A statistic that summarizes the curve by summing the curve’s values at each 
point. For ROC, the AUC represents the probability that the score for a randomly chosen positive 
example will be higher than that of a randomly chosen negative example, i.e., the probability that the 
classifier could, with an appropriate cutoff, distinguish the two examples. 

● Decision cost function minimum: The minimum achievable weighted sum of misses and false alarms. 

● Equal error rate (EER): The point in the curve where the recall and false negative rate are equal. A 
lower EER indicates better performance. 

https://www.cambridge.org/core/books/evaluating-learning-algorithms/3CB22D16AB609D1770C24CA2CB5A11BF
https://www.sciencedirect.com/science/article/abs/pii/S0031320396001422
https://ccc.inaoep.mx/~villasen/bib/martin97det.pdf
https://arxiv.org/abs/1804.09618
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● True positive rate at false positive rate of x (TPR@FPR=x): The true positive rate (i.e., recall) achieved 
when the probability cutoff is set to yield a fixed false positive rate x. This metric can be useful in 
settings where the false positive rate must be kept low. 

E.2. Background: Frameworks for Model and Data Transparency 

One form of testing synthetic content generation systems is for humans to manually check system behaviors, 
outputs, or properties. Having transparency into the system and its models, the training data, and the data 
used to test the system can provide helpful information to developers, deployers, or users as they spot-check 
and test systems. There are a variety of frameworks that provide ways to disclose key details about the model, 
the system, or the data used in training or testing. Frameworks include model cards, data sheets, a model card 
guidebook, and AI fact sheets. 

E.3. Adversarial Attacks and Defenses on Synthetic Content Detection 

A common framework used to measure the quality of synthetic content detectors is to construct attacks and 
defenses on the system. Classifiers can be attacked in a variety of ways, but the ones typically used to evaluate 
synthetic content classifiers involve adding carefully-crafted data inputs either to the training set or the test 
set so that the system will mishandle or misclassify samples in the test set. To account for what attacks and 
defenses are relevant to a given system’s expected context of use, the space of attacks can be defined or 
restricted relative to a threat model. One example of a threat model is: all attacked images are images altered 
from the test set where the alteration does not change the true class and the maximum distance from that 
original image (under some distance metric) is at most a small, fixed value. This style of experiment is a 
common way to evaluate attacks and defenses.  

When constructing and evaluating attacks and defenses, several strategies can be used. The first such strategy 
is to construct an attack on the system, then train a defense specific to treating that attack and evaluate the 
defense’s effectiveness. As this strategy does not show how the defense generalizes relative to other attacks, 
a second strategy has been developed: transferability analysis. A transferability analysis measures if attacks 
and defenses trained on one model and on one dataset can be successful on other datasets and situations. 
One can measure both intra-algorithm transferability (where the attack and defense are trained on one 
dataset but the system now must handle the same attack on a different dataset) and inter-algorithm 
transferability (using adversarial attacks from one trained model to fool a completely different algorithm, 
sometimes trained on the training dataset). The third strategy, the binarization test, takes testing defenses on 
new attacks further: it uses a custom-designed machine learning classification to generate additional attacks 
to test the robustness of given defenses. 

E.4. Theoretical Proofs to Support Synthetic Content Detection Techniques 

Mathematical proofs can establish properties supporting the correctness, efficiency, or effectiveness of 
content transparency techniques. For defenses against adversaries fooling classifiers with tampered images, 
one such proof is a robustness certificate. A robustness certificate gives a guarantee that that no attempt to 
alter an image by at most a pre-specified small amount (according to some distance metric) can fool the 
system into misclassifying the altered image.  

https://doi.org/10.1145/3287560.3287596
http://arxiv.org/abs/1803.09010
https://huggingface.co/docs/hub/main/model-card-guidebook
https://huggingface.co/docs/hub/main/model-card-guidebook
http://sites.computer.org/debull/A21dec/p47.pdf
https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-2e2023.pdf
https://arxiv.org/abs/1902.06705
https://arxiv.org/abs/1902.06705
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1602.02697
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/2206.13991
https://arxiv.org/abs/2006.00731
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Appendix F. Glossary  

Synthetic content detection: Determining whether content is AI-generated or not. 

AI system: An engineered or machine-based system that can, for a given set of objectives, generate outputs 
such as predictions, recommendations, or decisions influencing real or virtual environments. AI systems are 
designed to operate with varying levels of autonomy (NIST AI RMF) 

Audit: “Independent review and examination of records and activities to assess the adequacy of system 
controls, to ensure compliance with established policies and operational procedures.” (NIST SP 1800-15B 
under Audit from NIST SP 800-12 Rev. 1)  

Authentication: Verifying the identity of a user, process, or device, often as a prerequisite to allowing access 
to resources in an information system. (FIPS 200)  

Authenticity: With respect to digital content transparency, refers to the quality of being genuine, with 
trustworthiness about its source or origin. 

Best practice: “A procedure that has been shown by research and experience to produce optimal results and 
that is established or proposed as a standard suitable for widespread adoption.” (NIST SP 1800-15B from 
Merriam-Webster) 

Content authentication: Use of provenance data tracking methods, or detection of information recorded 
using such methods, to determine that content is authentic, i.e., that it is not synthetic. 

Digital content transparency: The ability to obtain access and exposure to information regarding the origins 
and history of digital content. Transparency does not directly imply trust, but rather provides a vehicle for 
individuals, organizations, and other entities to have greater information access. 

Digital signature: The result of a cryptographic transformation of data that, when properly implemented, 
provides a mechanism for verifying origin authentication, data integrity, and signatory non-repudiation. (FIPS 
186-5)  

Digital watermarking: involves embedding information into content (image, text, audio, video) in order to 
make it difficult to remove. The goal of such watermarking is to assist in verifying the authenticity of the 
content or characteristics of its provenance, modifications, or conveyance. (White House EO, 2023) 

Evaluation: systematic determination of the extent to which an entity meets its specified criteria; (2) action 
that assesses the value of something (AI Resource Center Glossary, citing ISO/IEC 24765) 

Hash function: A function that maps data of arbitrary length to a fixed-length. (modified from NIST.SP.800-
108r1-upd1, 2024) 

Information integrity: Describes the spectrum of information and associated patterns of creation, exchange, 
and consumption in society, where high-integrity information is trustworthy; distinguishes fact from fiction, 
opinion, and inference; acknowledges uncertainties; and is transparent about its level of vetting. (White 
House, 2022) 

Interoperability: The ability for tools to work together in execution, communication, and data exchange under 
specific conditions. (NIST.SP.1500-1r2) 

Least significant bit(s): The rightmost bit(s) of a bit string. (NIST SP 800-38A) 

https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf
https://doi.org/10.6028/NIST.SP.1800-15
https://doi.org/10.6028/NIST.SP.800-12r1
https://doi.org/10.6028/NIST.FIPS.200
https://doi.org/10.6028/NIST.SP.1800-15
https://www.merriam-webster.com/
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.FIPS.186-5
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://airc.nist.gov/AI_RMF_Knowledge_Base/Glossary
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/12/Roadmap-Information-Integrity-RD-2022.pdf?_hsenc=p2ANqtz-_x-sgb3MM0fsqqLg3Vz4Vten0hlnHejas4CchT-Z59EnsVTC5XWcZHb2T4TR9Tz2TDQTP8lpdwR8PiDSI4GNApCIykTA
https://www.whitehouse.gov/wp-content/uploads/2022/12/Roadmap-Information-Integrity-RD-2022.pdf?_hsenc=p2ANqtz-_x-sgb3MM0fsqqLg3Vz4Vten0hlnHejas4CchT-Z59EnsVTC5XWcZHb2T4TR9Tz2TDQTP8lpdwR8PiDSI4GNApCIykTA
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-1r2.pdf
https://doi.org/10.6028/NIST.SP.800-38A
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Metadata: “Information describing the characteristics of data including, for example, structural metadata 
describing data structures (e.g., data format, syntax, and semantics) and descriptive metadata describing data 
contents (e.g., information security labels).” (NIST SP 800-150, CNSSI 4009-2015)  

Open information ecosystem: An information ecosystem that supports a free exchange of ideas, enables ideas 
to flow from multiple sources, empowers people to express conflicting perspectives in a constructive manner, 
and leverages a free market of technologies to distribute information to audiences. (White House, 2022) 

Provenance data tracking: Practice of recording the origins and history for digital content. It consists of 
techniques to record metadata as well as overt and covert digital watermarks on digital content. Provenance 
data tracking can help to establish the authenticity, integrity, and credibility of digital content. (derived from 
NIST SP 800-161r1, NIST SP 800-218, NIST SP 800-53 Rev. 5, NIST SP 800-37 Rev. 2) 

Software testing: The evaluation of software that utilizes Verification and validation (also abbreviated as V&V) 
to check that a product, service, or system meets requirements and specifications and that it fulfills its 
intended purpose. (Global Harmonization Task Force - Quality Management Systems - Process Validation 
Guidance) 

Standard: a “document, established by consensus and approved by a recognized body, that provides – for 
common and repeated use – rules, guidelines or characteristics for activities or for their results, aimed at the 
achievement of the optimum degree of order in a given context.” (Consumers and Standards: Partnership 

for a Better World) 

Steganography: A technique which hides a watermark or content information file inside a primary media file. 
A common type of steganography involves embedding this hidden or secret information in the least significant 
bits of a media file’s content (e.g., pixel values) by replacing those bits with the hidden data. (derived from 
Authenticating AI-Generated Content, 2024, NIST SP 800-101 Rev. 1 under Steganography, NIST SP 800-72 
under Steganography) 

Synthetic content: “information, such as images, videos, audio clips, and text, that has been significantly 
altered or generated by algorithms, including by AI” (White House, 2023)  

Tampering: “An intentional but unauthorized act resulting in the modification of a system, components of 
systems, its intended behavior, or data.” (Computer Security Resource Center Glossary) 

Test: (1) activity in which a system or component is executed under specified conditions, the results are 
observed or recorded, and an evaluation is made of some aspect of the system or component; (2) to conduct 
an activity as in (1); (3) set of one or more test cases and procedures. AI Resource Center Glossary citing 
ISO/IEC/IEEE 24765:2017(en) Systems and software engineering - Vocabulary  

https://doi.org/10.6028/NIST.SP.800-150
https://www.cnss.gov/CNSS/issuances/Instructions.cfm
https://www.whitehouse.gov/wp-content/uploads/2022/12/Roadmap-Information-Integrity-RD-2022.pdf?_hsenc=p2ANqtz-_x-sgb3MM0fsqqLg3Vz4Vten0hlnHejas4CchT-Z59EnsVTC5XWcZHb2T4TR9Tz2TDQTP8lpdwR8PiDSI4GNApCIykTA
https://doi.org/10.6028/NIST.SP.800-161r1
https://doi.org/10.6028/NIST.SP.800-218
https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-37r2
https://en.wikipedia.org/wiki/Requirement
https://en.wikipedia.org/wiki/Specification_(technical_standard)
https://www.imdrf.org/sites/default/files/docs/ghtf/final/sg3/technical-docs/ghtf-sg3-n99-10-2004-qms-process-guidance-04010.pdf
https://www.imdrf.org/sites/default/files/docs/ghtf/final/sg3/technical-docs/ghtf-sg3-n99-10-2004-qms-process-guidance-04010.pdf
https://www.iso.org/sites/ConsumersStandards/1_standards.html#:~:text=The%20formal%20definition%20from%20the,repeated%20use%2C%20rules%2C%20guidelines%20or
https://www.iso.org/sites/ConsumersStandards/1_standards.html#:~:text=The%20formal%20definition%20from%20the,repeated%20use%2C%20rules%2C%20guidelines%20or
https://doi.org/10.6028/NIST.SP.800-101r1
https://doi.org/10.6028/NIST.SP.800-72
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://csrc.nist.gov/glossary/term/tampering
https://airc.nist.gov/AI_RMF_Knowledge_Base/Glossary
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Appendix G. Acronyms 

AI: Artificial Intelligence 

AI RMF: Artificial Intelligence Risk Management Framework 

AIG-CSAM: AI-generated child sexual abuse material 

AIG-NCII: AI-generated non-consensual intimate images 

ATSC: Advanced Television Systems Committee 

AUC: area under curve 

AUROC: Area Under the Receiver Operator Curve 

C2PA: Coalition on Content Provenance and Authenticity 

CA: certificate authorities 

CSAM: child sexual abuse material 

DARPA SemaFor: Defense Advanced Research Projects Agency Semantic Forensics Program 

EER: Equal error rate 

EXIF: Exchangeable Image File Format  

FPR: false positive rate  

GAI: Generative AI 

IEC: International Electrotechnical Commission 

IOT: Internet of Things 

IPTC: International Press Telecommunications Council 

ISO: International Organization for Standardization 

LSB: least significant bit 

NCII: non-consensual intimate images 

NCMEC: National Center for Missing & Exploited Children 

NIST: National Institute of Standards and Technology 

PKI: public key infrastructure 

ROC: Receiver operating characteristic 

SEAL: Secure Evidence Attribution Label 

SMPTE: Society of Motion Picture and Television Engineers 

TPR: true positive rate  

XMP: Extensible Metadata Platform 


