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Abstract

The rapid development of advanced AI agents and the imminent deployment
of many instances of these agents will give rise to multi-agent systems of un-
precedented complexity. These systems pose novel and under-explored risks.
In this report, we provide a structured taxonomy of these risks by identify-
ing three key failure modes (miscoordination, conflict, and collusion) based on
agents’ incentives, as well as seven key risk factors (information asymmetries,
network effects, selection pressures, destabilising dynamics, commitment prob-
lems, emergent agency, and multi-agent security) that can underpin them. We
highlight several important instances of each risk, as well as promising direc-
tions to help mitigate them. By anchoring our analysis in a range of real-world
examples and experimental evidence, we illustrate the distinct challenges posed
by multi-agent systems and their implications for the safety, governance, and
ethics of advanced AI.

∗Correspondence to lewis.hammond@cooperativeai.org. Suggested citation: “Hammond et al. (2025). Multi-Agent
Risks from Advanced AI. Cooperative AI Foundation, Technical Report #1.” Author clusters are ordered by approximate
magnitude of contribution and represent the lead author, organisers, major contributors, minor contributors, and advisors,
respectively. Within clusters, authors are listed alphabetically. Full details of author roles are available in Appendix A.
Affiliations in parentheses indicate that the author’s work on this report was primarily completed while under that affiliation.
Due to the length of the author list, authorship does not entail endorsement of all claims in the report, nor does inclusion
entail an endorsement on the part of any individual’s organisation. In particular, contributions to this report reflect the
views of the respective contributors and not necessarily the views of the Cooperative AI Foundation, its trustees, or funders.
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Executive Summary

The proliferation of increasingly advanced AI not only promises widespread benefits, but also presents
new risks (Bengio et al., 2024; Chan et al., 2023). Today, AI systems are beginning to au-
tonomously interact with one another and adapt their behaviour accordingly, forming multi-
agent systems. This change is due to the widespread adoption of sophisticated models that can interact
via a range of modalities (including text, images, and audio), and the competitive advantages conferred
by autonomous, adaptive agents (Anthropic, 2024a; Google DeepMind, 2024; OpenAI, 2025).

While still relatively rare, groups of advanced AI agents are already responsible for tasks that range from
trading million-dollar assets (AmplifyETFs, 2025; Ferreira et al., 2021; Sun et al., 2023a) to recommend-
ing actions to commanders in battle (Black et al., 2024; Manson, 2024; Palantir, 2025). In the near
future, applications will include not only economic and military domains, but are likely to
extend to energy management, transport networks, and other critical infrastructure (Ca-
macho et al., 2024; Mayorkas, 2024). Large populations of AI agents will also feature in more familiar
social settings as intelligent personal assistants or representatives, capable of being delegated increasingly
complex and important tasks.

While bringing new opportunities for scalable automation and more diffuse benefits to society, these
advanced, multi-agent systems present novel risks that are distinct from those posed by
single agents or less advanced technologies, and which have been systematically underappreciated
and understudied. This lack of attention is partly because present-day multi-agent systems are rare (and
those that do exist are often highly controlled, such as in automated warehouses), but also because even
single agents present many unsolved problems (Amodei et al., 2016; Anwar et al., 2024; Hendrycks et al.,
2021). Given the current rate of progress and adoption, however, we urgently need to evaluate
(and prepare to mitigate) multi-agent risks from advanced AI. More concretely, we provide
recommendations throughout the report that can largely be classified as follows.

• Evaluation: Today’s AI systems are developed and tested in isolation, despite the fact that they
will soon interact with each other. In order to understand how likely and severe multi-agent risks
are, we need new methods of detecting how and when they might arise, such as: evaluating the
cooperative capabilities, biases, and vulnerabilities of models; testing for new or improved danger-
ous capabilities in multi-agent settings (such as manipulation, collusion, or overriding safeguards);
more open-ended simulations to study dynamics, selection pressures, and emergent behaviours; and
studies of how well these tests and simulations match real-world deployments.

• Mitigation: Evaluation is only the first step towards mitigating multi-agent risks, which will
require new technical advances. While our understanding of these risks is still growing, there
are promising directions that we can begin to explore now, such as: scaling peer incentivisation
methods to state-of-the-art models; developing secure protocols for trusted agent interactions;
leveraging information design and the potential transparency of AI agents; and stabilising dynamic
multi-agent networks and ensuring they are robust to the presence of adversaries.

• Collaboration: Multi-agent risks inherently involve many different actors and stakeholders, of-
ten in complex, dynamic environments. Greater progress can be made on these interdisciplinary
problems by leveraging insights from other fields, such as: better understanding the causes of un-
desirable outcomes in complex adaptive systems and evolutionary settings; determining the moral
responsibilities and legal liabilities for harms not caused by any single AI system; drawing lessons
from existing efforts to regulate multi-agent systems in high-stakes contexts, such as financial
markets; and determining the security vulnerabilities and affordances of multi-agent systems.

To support these recommendations, we introduce a taxonomy of AI risks that are new, much
more challenging, or qualitatively different in the multi-agent setting, together with a
preliminary assessment of what can be done to mitigate them. We identify three high-level
failure modes, which depend on the nature of the agents’ objectives and the intended behaviour of the
system: miscoordination, conflict, and collusion. We then describe seven key risk factors that can lead
to these failures: information asymmetries, network effects, selection pressures, destabilising dynamics,
commitment and trust, emergent agency, and multi-agent security. For each problem we provide a
definition, key instances of how and where it can arise, illustrative case studies, and promising directions
for future work. We conclude by discussing the implications for existing work in AI safety, AI governance,
and AI ethics.
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1 Introduction

The proliferation of increasingly advanced AI not only promises widespread benefits, but also presents
new risks (Bengio et al., 2024; Chan et al., 2023). In the future, AI systems will commonly interact and
adapt in response to one another, forming multi-agent systems.1 This trend will be driven by several
factors. First, recent technical progress and publicity will continue to drive adoption, including in high-
stakes areas such as financial trading (AmplifyETFs, 2025; Ferreira et al., 2021; Sun et al., 2023a) and
military strategy (Black et al., 2024; Manson, 2024; Palantir, 2025). Second, AI systems that can act
autonomously and adapt while deployed as agents will have competitive advantages compared to non-
adaptive systems or those with humans in the loop. Third, the more widely such agents are deployed,
the more they will come to interact with one another.

The emergence of these advanced multi-agent systems presents a number of risks which have thus far
been systematically underappreciated and understudied. In part, this lack of attention is because the
deployment of such systems is currently rare, or constrained to highly controlled settings (such as auto-
mated warehouses) that do not suffer from the most severe risks. In part, it is because even the simpler
problem of ensuring the safe and ethical behaviour of a single advanced AI system is far from solved
(Amodei et al., 2016; Anwar et al., 2024; Hendrycks et al., 2021), and multi-agent settings are strictly
more complex. Indeed, many multi-agent risks are inherently sociotechnical and require attention from
many stakeholders and researchers across many disciplines (Curtis et al., 2024; Lazar & Nelson, 2023).

Importantly, these risks are distinct from those posed by single agents or less advanced technologies, and
will not necessarily be addressed by efforts to mitigate the latter. For example: the alignment of AI agents
with different actors is insufficient to prevent conflict if those actors have diverging interests (Critch &
Krueger, 2020; Dafoe et al., 2020; Jagadeesan et al., 2023a; Manheim, 2019; Sourbut et al., 2024); errors
that may be acceptable in isolation could compound in complex, dynamic networks of agents (Buldyrev
et al., 2010; Kirilenko et al., 2017; Lee & Tiwari, 2024; Maas, 2018; Sanders et al., 2018); and groups
of agents could combine or collude to develop dangerous capabilities or goals that cannot be ascribed
to any individual (Calvano et al., 2020; Drexler, 2022; Jones et al., 2024; Mogul, 2006; Motwani et al.,
2024). Advanced AI also introduces phenomena that differ fundamentally from previous generations of
AI or other technologies, requiring new approaches to mitigating these risks (Bengio et al., 2024).

With the current rate of progress, we therefore urgently need to evaluate (and prepare to mitigate)
multi-agent risks from advanced AI. In this report we take a first step in this direction by providing a
taxonomy of risks that either: emerge, are much more challenging, or are qualitatively different in the
multi-agent setting (see Table 1). We identify three key high-level failure modes (Section 2), and seven
key risk factors that can lead to these failures (Section 3), before discussing the implications for AI
safety, AI governance, and AI ethics (Section 4). Throughout the report we illustrate these risks with
concrete examples, either from real-world events, previous research, or novel experiments (see Table 3).

1.1 Overview

We begin by identifying different failure modes in multi-agent systems based on the nature of the agents’
goals and the intended behaviour of the system. In most multi-agent systems, we are interested in AI
agents working together to achieve their respective goals or the goals of those who deployed them. In this
case, we categorise failures into miscoordination (Section 2.1), where agents fail to cooperate despite
having the same goal, and conflict (Section 2.2), where agents with different goals fail to cooperate. A
third and final kind of failure – collusion (Section 2.3) – can arise in competitive settings where we do
not want agents cooperating (such as markets).

We next introduce a number of risk factors by which these failure modes can arise, and which are largely
independent of the agents’ precise incentives.2 For example, information asymmetries could lead to
miscoordination between agents with the same goal, or to conflict among agents with competing goals.
These factors are not specific to AI systems, but the differences between AI systems and other kinds
of intelligent agents (such as humans or corporations) leads to different risk instances and potential
solutions. Finally, note that the following factors are not necessarily exhaustive or mutually exclusive.

1A fundamental fact about (software-based) AI systems is that they can be easily duplicated. Thus, the vast training
costs involved in producing state-of-the-art systems can be amortized over millions of instances. In this sense, if nothing
else, the concept of multi-agent systems is core to transformative AI.

2Indeed, there are potential risks from multi-agent systems in which it is not the agents’ objectives that are the critical
feature, but their general incompetencies or vulnerabilities.
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Risk Instances Directions

Miscoordination • Incompatible Strategies
• Credit Assignment
• Limited Interactions

• Communication
• Norms and Conventions
• Modelling Other Agents

Conflict • Social Dilemmas
• Military Domains
• Coercion and Extortion

• Learning Peer and Pool Incentivisation
• Establishing Trust
• Normative Approaches to Equilibrium Selection
• Cooperative Dispositions
• Agent Governance
• Evidential Reasoning

Collusion • Markets
• Steganography

• Detecting AI Collusion
• Mitigating AI Collusion
• Assessing Impacts on Safety Protocols

Information
Asymmetries

• Communication
Constraints
• Bargaining
• Deception

• Information Design
• Individual Information Revelation
• Few-Shot Coordination
• Truthful AI

Network Effects • Error Propagation
• Network Rewiring
• Homogeneity and
Correlated Failures

• Evaluating and Monitoring Networks
• Faithful and Tractable Simulations
• Improving Network Security and Stability

Selection
Pressures

• Undesirable Dispositions
from Competition
• Undesirable Dispositions
from Human Data
• Undesirable Capabilities

• Evaluating Against Diverse Co-Players
• Environment Design
• Understanding the Impacts of Training
• Evolutionary Game Theory
• Simulating Selection Pressures

Destabilising
Dynamics

• Feedback Loops
• Cyclic Behaviour
• Chaos
• Phase Transitions
• Distributional Shift

• Understanding Dynamics
• Monitoring and Stabilising Dynamics
• Regulating Adaptive Multi-Agent Systems

Commitment
and Trust

• Inefficient Outcomes
• Threats and Extortion
• Rigidity and Mistaken
Commitments

• Keeping Humans in the Loop
• Limiting Commitment Power
• Institutions and Normative Infrastructure
• Privacy-Preserving Monitoring
• Mutual Simulation and Transparency

Emergent
Agency

• Emergent Capabilities
• Emergent Goals

• Empirical Exploration
• Theories of Emergent Capabilties
• Theories of Emergent Goals
• Monitoring and Intervening on Collective Agents

Multi-Agent
Security

• Swarm Attacks
• Heterogeneous Attacks
• Social Engineering at Scale
• Vulnerable AI Agents
• Cascading Security Failures
• Undetectable Threats

• Secure Interaction Protocols
• Monitoring and Threat Detection
• Multi-Agent Adversarial Testing
• Sociotechnical Security Defences

Table 1: An overview of the instances and research directions identified for each failure mode and risk
factor (see Sections 2 and 3 for a discussion of each bullet point).
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• Information asymmetries (Section 3.1): private information can lead to miscoordination, de-
ception, and conflict;

• Network effects (Section 3.2): minor changes in properties or connection patterns of agents in a
network can lead to dramatic changes in the behaviour of the whole group;

• Selection pressures (Section 3.3): some aspects of training and selection by those deploying and
using AI agents can lead to undesirable behaviour;

• Destabilising dynamics (Section 3.4): systems that adapt in response to one another can produce
dangerous feedback loops and unpredictability;

• Commitment and trust (Section 3.5): difficulties in forming credible commitments, trust, or
reputation can prevent mutual gains in AI-AI and human-AI interactions;

• Emergent agency (Section 3.6): qualitatively different goals or capabilities can emerge from the
composition of innocuous independent systems or behaviours;

• Multi-agent security (Section 3.7): multi-agent systems give rise to new kinds of security threats
and vulnerabilities.

We conclude the report by surveying the safety, governance, and ethical implications of these risks (see
Table 2). For example, most work on AI safety (Section 4.1) focuses on issues such as the robustness,
interpretability, or alignment of a single system (Amodei et al., 2016; Anwar et al., 2024; Hendrycks
et al., 2021), despite the fact that an increasing number of proposals for building safer AI systems are
implicitly multi-agent (e.g., Drexler, 2019; Greenblatt et al., 2023; Irving et al., 2018; Perez et al., 2022a;
Schwettmann et al., 2023). The fact that AI governance (Section 4.2) efforts often involve multi-
stakeholder settings provides hope that governance tools can complement technical advances to mitigate
multi-agent risks (Reuel et al., 2024a; Trager et al., 2023). At the same time, multi-agent interactions
naturally raise questions in AI ethics (Section 4.3) related to issues of fairness, collective responsibility,
and the social good (Friedenberg & Halpern, 2019; Gabriel et al., 2024; Zhang & Shah, 2014a).

Safety Governance Ethics

• Alignment is Not Enough
• Collusion in Adversarial
Safety Schemes
• Dangerous Collective Goals
and Capabilities
• Correlated and Compounding
Failures
• Robustness and Security in
Multi-Agent Systems

• Supporting Research on
Multi-Agent Risks
• Multi-Agent Evaluations
• New Forms of Documentation
• Infrastructure for AI Agents
• Restrictions on Development
and Deployment
• Liability for Harms from
Multi-Agent Systems
• Improving Societal Resilience

• Pluralistic Alignment
• Agentic Inequality
• Epistemic Destablisation
• Compounding of Unfairness
and Bias
• Compounding of Privacy Loss
• Accountability Diffusion

Table 2: An overview of the implications of multi-agent risks for existing work in AI safety, governance,
and ethics (see Section 4 for a discussion of each bullet point).

1.2 Scope

Concerns about the risks posed by AI systems range from biased hiring decisions (Raghavan et al., 2020)
to existential catastrophes (Bostrom, 2014), and are represented by a vast literature. Before giving a
brief overview of the most closely related works, it is therefore worth us pausing to clarify the scope of
this report, which is as follows.

• Risks and failure modes: we seek to identify specific mechanisms via which risks could emerge,
rather than just just the open research problems that these risks present.

• Multiple agents: if the risk could arise in essentially the same way in the context of a single AI
system, then we deem it to be out of scope for this report (while not diminishing its importance).3

3Note that this includes the problem of alignment (Ngo et al., 2022; Russell, 2019), which we do not study in this
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• Advanced AI: while many of the risks we identify also apply to simpler systems, their effects
are most severe in the context of increasingly autonomous and powerful AI agents,4 and so this is
where our primary focus lies.

• Real-world examples: wherever possible, we make sure to ground these risks in real-world events,
previous research, or novel experiments – not merely hypothetical speculation (see Table 3).

• Technical perspectives: due to the authors’ expertise (and to keep the scope of the report
manageable), we primarily discuss risks from a technical perspective, while acknowledging that
this perspective is limited.

• Concrete paths forwards: where possible, we aim to specify relatively narrow proposals for
future research, in the hope that this makes it easier for others to contribute.

Needless to say, multi-agent risks from advanced AI are by no means the only risks posed by AI, and
the perspective we take in this report is by no means the only approach to understanding these risks.
Moreover, we almost entirely neglect the potential upsides of advanced multi-agent systems: greater
decentralisation and democratisation of AI technologies; assistance in cooperating and coordinating
with others; increased robustness, flexibility, and efficiency; novel approaches to solving alignment and
safety issues in single-agent settings; and – perhaps most importantly – more widespread and evenly
distributed benefits from AI. We hope that this report serves to complement earlier and adjacent research
on understanding these challenges and opportunities.

1.3 Related Work

The most similar report to ours is that of Manheim (2019), who introduces a range of technical multi-
agent failure modes through the lens of model over-optimization. This over-optimisation can result in
the intended and actual behaviour of the model coming apart when faced with low-probability inputs, a
regime change, measurement errors, or inaccuracies in the model’s internal representations. While this
lens is helpful for understanding some multi-agent risk factors, not all factors can neatly be captured
through it. Altmann et al. (2024) and Mogul (2006) take an alternative perspective and focus on
‘emergent’ failures that occur specifically in multi-agent settings, though their focus is not on advanced
AI agents. Also highly relevant is Clifton (2020)’s agenda on cooperation and conflict in the context of
transformative AI, though the priority of that work is to describe a set of promising research directions,
rather than to explicate the underlying risks.

More broadly, the topics of this report are closely related to the emerging subfield of cooperative AI
(Bertino et al., 2020; Conitzer & Oesterheld, 2023; Dafoe et al., 2021, 2020), which chiefly studies how
to engineer AI systems in order to help solve cooperation problems between humans, AI agents, or
combinations thereof. In contrast to these previous agendas, we also discuss failures from undesirable
cooperation (i.e., collusion) and focus more on the concrete mechanisms via which failures can occur,
rather than the capabilities needed for addressing them. We also incorporate additional perspectives
beyond traditional game-theoretic paradigms – such as complex systems and security – and highlight
implications for work in AI governance and AI ethics in addition to AI safety.

Other surveys of AI risks focus primarily on the case of individual (often present-day) AI systems. For
example, Amodei et al. (2016) survey a range of concrete problems in AI safety (side effects, reward
hacking, scalable oversight, safe exploration, and robustness to distributional shifts), while Hendrycks
et al. (2021) provide a classification of problems in ML safety (robustness, monitoring, alignment, and
systemic safety). Anwar et al. (2024), Bird et al. (2023), Bommasani et al. (2021), and Weidinger et al.
(2022) focus on the risks from foundation models specifically, while Chan et al. (2023) and Gabriel et al.
(2024) consider the harms posed by increasingly ‘agentic’ systems and AI assistants. Other taxonomies
seek to adopt an explicitly sociotechnical lens (Abercrombie et al., 2024; Shelby et al., 2023; Weidinger
et al., 2023b), often focusing primarily on present-day risks. Uuk et al. (2025) and Zeng et al. (2024)
provide meta-reviews of AI risks derived from different research papers, as well as government and

report.
4We tend to reserve the word ‘agent’ for more autonomous, self-sufficient, and goal-directed systems, though what

counts as an ‘AI agent’ as opposed to a mere ‘AI system’ is not always clear (Chan et al., 2023; Gabriel et al., 2024; Kapoor
et al., 2024). Similarly, we will often use the word ‘principal’ for the actor on whose behalf an agent acts (be they an
individual, a group, or some other entity). Note also that we do not necessarily advocate for the building of advanced AI
agents (Mitchell et al., 2025), we merely expect that such agents will be built.
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company policies. Our report is complementary to these works, and includes discussion of how novel
problems arise in the multi-agent case, and in the case of more advanced AI agents.

More speculatively, some authors have considered the possibility of catastrophic or even existential risks
from AI (Bostrom, 2014; Kasirzadeh, 2024b; Ord, 2020; Turchin & Denkenberger, 2018). Hendrycks
et al. (2023) categorises such risks into malicious use, AI races, organizational risks, and rogue AIs. As
in Hendrycks (2023), multi-agent risks are viewed largely through an evolutionary lens, though this is
primarily restricted to competitive pressures at the level of non-AI actors (such as firms or states). Critch
& Krueger (2020) and Critch & Russell (2023) frame such risks in terms of delegation to AI systems and
the responsibilities of those doing so. While they provide illuminating vignettes of possible catastrophes,
we aim to provide more concrete examples at a more modest scale.

Case Study M
is

co
or

d
in

at
io

n

C
on

fl
ic

t

C
ol

lu
si

o
n

In
fo

rm
a
ti

on
A

sy
m

m
et

ri
es

N
et

w
or

k
E

ff
ec

ts

S
el

ec
ti

o
n

P
re

ss
u

re
s

D
es

ta
b

il
is

in
g

D
y
n

am
ic

s

C
om

m
it

m
en

t
a
n

d
T

ru
st

E
m

er
g
en

t
A

g
en

cy

M
u

lt
i-

A
g
en

t
S

ec
u

ri
ty

Type Page

Zero-Shot Coordination Failures in
Driving

✓ · · ✓ · ✓ · · · · ■ 11

Escalation in Military Conflicts · ✓ · · · · ✓ · · · ▲ 15

Common Resource Problems · ✓ · · · ✓ · ✓ · · ▲ 14

Algorithmic Collusion in the German
Retail Gasoline Market

· · ✓ · · ✓ · · ✓ · • 18

Language Model Steganography · · ✓ · · · · · · ✓ ▲ 19

AI Agents Can Learn to Manipulate
Financial Markets

· ✓ · ✓ · · · · · · ▲ 21

Transmission Through AI Networks
Can Spread Falsities and Bias

· · · ✓ ✓ · · · · · ■ 24

Infectious Adversarial Attacks in
Networks of LLM Agents

· · · · ✓ · · · · ✓ ▲ 25

Cooperation Fails to Culturally Evolve
among LLM Agents

· ✓ · · · ✓ · ✓ · · ▲ 28

The 2010 Flash Crash · · · · ✓ · ✓ · · · • 31

Dead Hands and Automated
Deterrence

· ✓ · · · · · ✓ · · • 35

Overcoming Safeguards via Multiple
Safe Models

· · · · · · · · ✓ ✓ ▲ 40

Unprompted Adversarial Attacks on
Overseer Agents

· · · · · · · · · ✓ ■ 41

Table 3: An overview of the case studies present in this report, and the failure modes and risk factors
that they represent. Each case study represents either a historical example (•), existing results from
the literature (▲), or – when neither of these existed – novel experiments that we conducted as part of
this report (■). Further details about our own experiments are provided in Appendix B.
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2 Failure Modes

Multi-agent systems can fail in various ways, depending on the intended behaviour of the system and the
objectives of the agents. First, we can distinguish between cases where we want the agents to be cooper-
ating (as in collective action problems or team games) or competing (such as in markets or adversarial
training). Second, we can further divide the space of failure modes depending on whether the agents
have exactly the same objectives, different but overlapping objectives, or completely opposed objectives.5

While different authors have used different terms to describe these cases, we use the terminology shown
in Figure 1.6 Finally, there are many potential risks from advanced multi-agent systems that do not
necessarily arise through agents competently pursuing their objectives, but due to their incompetencies
or vulnerabilities. We consider these latter failures as part of our discussion on different risk factors in
Section 3.

Cooperation?

CollusionObjectives?

N/AConflictMiscoordination

Identical

Mixed

Opposing

Desirable Undesirable

Figure 1: The three kinds of failure mode that we study in this work. Note that we do not consider
constant-sum settings where cooperation is desirable, as in such cases it is definitionally impossible for
some agents to gain without a commensurate loss from one or more other agents.

2.1 Miscoordination

The simplest kind of cooperation failures are those in which all agents have (approximately) the same
objectives. Even in such common-interest settings, however, miscoordination abounds. While it is
reasonable to expect that these problems will tend to be addressed as the general capabilities of AI
systems (such as communication and reasoning about others) improve,7 they may still present risks in
the near-term.

2.1.1 Definition

Miscoordination arises when agents, despite a mutual and clear objective, cannot align their behaviours
to achieve this objective. Unlike the case of differing objectives, in common-interest settings there is a
more easily well-defined notion of ‘optimal’ behaviour and we describe agents as miscoordinating to the
extent that they fall short of this optimum. Note that for common-interest settings it is not sufficient
for agents’ objectives to be the same in the sense of being symmetric (e.g., when two agents both want
the same prize, but only one can win). Rather, agents must have identical preferences over outcomes
(e.g., when two agents are on the same team and win a prize as a team or not at all).

It is rare that two humans will share exactly the same objectives in this sense. For example, two
sportspeople on the same team may be primarily aiming to win their match but will also have individual
preferences, such as who scores the winning point. In the case of AI systems, however, different agents can
more easily be given precisely the same goal, and indeed much work on cooperation in AI focuses solely
on the common-interest setting (Boutilier, 1996; Omidshafiei et al., 2017; Oroojlooy & Hajinezhad, 2022;
Peshkin et al., 2000; Rashid et al., 2018; Stone et al., 2010). Such approaches are typically motivated by

5This division corresponds to common-interest/team games, mixed-motive/general-sum games, and constant-sum games,
respectively.

6In particular, we note that ‘conflict’ is often used more narrowly than the idea of ‘cooperation failure in mixed-motive
settings’, which is what we use the term for. We deliberately use ‘conflict’ instead of ‘cooperation failure’ to distinguish
this failure mode from ‘miscoordination’, which applies to problems in which agents have the same objectives.

7Note that this is unlike problems of conflict and collusion, where the fundamental tension between the desired outcome
and the agents’ objectives may in fact lead to worse outcomes as general AI capabilities improve.
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the practical and computational advantages that decentralised control confers, but are more challenging
to implement than their centralised, single-agent counterparts. Aside from this, miscoordination can also
occur in settings that have a substantial element of common interest, even if agents’ objectives are not
entirely identical.

2.1.2 Instances

Perhaps the most likely way that common-interest settings may arise in practice is where a single prin-
cipal deploys multiple AI agents on their behalf in order to jointly solve a task. This choice might be
motivated by: physical constraints (if the task comprises sub-tasks that must be completed separately
and simultaneously); efficiency considerations (if having a single agent in charge of all aspects of the task
would lead to an intractably complex problem); or a desire for robustness (if an individual agent might
fail but others could still succeed in their place). Alternatively, we might see multi-principal multi-agent
settings in which the agents’ goals are sufficiently aligned to be viewed as (approximately) identical.
For example, if two autonomous vehicles are driving along the same road, then the mutual harms from
potential miscoordination (such as a collision) are far greater than any small individual benefits from
competition (such as attempting a risky overtaking manoeuvre to get slightly ahead).

Incompatible Strategies. Even if all agents can perform well in isolation, miscoordination can still
occur due to the agents choosing incompatible strategies (Cooper et al., 1990). Competitive (i.e., two-
player zero-sum) settings allow designers to produce agents that are maximally capable without taking
other players into account. Crucially, this is possible because playing a strategy at equilibrium in the
zero-sum setting guarantees a certain payoff, even if other players deviate from the equilibrium (Nash,
1951). On the other hand, common-interest (and mixed-motive) settings often allow a vast number of
mutually incompatible solutions (Schelling, 1980), which is worsened in partially observable environments
(Bernstein et al., 2002; Reif, 1984). As a simple example, everyone driving on the left side or the right
side of the road are both perfectly valid ways of keeping drivers safe, but these two conventions are
inherently incompatible with one another (see Case Study 1).

Case Study 1: Zero-Shot Coordination Failures in Driving

Figure 2: Examples of scenes given to GPT-4 Vision in our language agent pipeline.

Miscoordination is possible even among agents with shared objectives. We demonstrate how two
frontier models trained on driving conventions from two different countries can face coordination
failures. Following recent advances in robotics that combine vision models for scene comprehen-
sion with large language models (LLMs) for discrete action planning (e.g., Padalkar et al., 2023),
we created an experiment using two fine-tuned GPT-3.5 models. One model was trained on US
driving protocols requiring rightward yielding for emergency vehicles, while the other followed
Indian conventions mandating leftward yielding. Context-specific training data was generated
as input-output pairs by GPT-4 based on the specified driving conventions and then manually
reviewed. A GPT-4 Vision model processed the environmental inputs and provided scene descrip-
tions to both fine-tuned GPT-3.5 models for action generation. The results quantified a significant
coordination failure: unspecialized base models failed in only 5% of scenarios (2/40 simulations),
while specialized models exhibited a 77.5% failure rate (31/40 simulations), consistently failing
to create clear paths for emergency vehicles. This demonstrates an example where a convention
cannot always be declared in a zero-shot interaction, posing risks in multi-agent settings.
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Credit Assignment. While agents can often learn to jointly solve tasks and thus avoid coordination
failures, learning is made more challenging in the multi-agent setting due to the problem of credit assign-
ment (Du et al., 2023; Li et al., 2025, see also Section 3.1 on information asymmetries and Section 3.4,
which discusses distributional shift). That is, in the presence of other learning agents, it can be unclear
which agents’ actions caused a positive or negative outcome to obtain, especially if the environment is
complex. Moreover, in multi-principal settings, agents may not have been trained together and therefore
need to generalise to new co-players and collaborators based on their prior experience (Agapiou et al.,
2022; Leibo et al., 2021; Stone et al., 2010).

Limited Interactions. Sometimes learning from historical interactions with the relevant agents may
not be possible, or may be possible using only limited interactions. In such cases, some other form of
information exchange is required for agents to be able to reliably coordinate their actions, such as via
communication (Crawford & Sobel, 1982; Farrell & Rabin, 1996a) or a correlation device (Aumann,
1974, 1987). While advances in language modelling mean that there are likely to be fewer settings in
which the inability of advanced AI systems to communicate leads to miscoordination, situations that
require split-second decisions or where communication is too costly could still produce failures. In these
settings, AI agents must solve the problem of ‘zero-shot’ (or, more generally, ‘few-shot’) coordination
(Emmons et al., 2022; Hu et al., 2020; Stone et al., 2010; Treutlein et al., 2021; Zhu et al., 2021).

2.1.3 Directions

Decentralised control and coordination in multi-agent systems have been well-studied problems for
decades (Boutilier, 1996; Omidshafiei et al., 2017; Oroojlooy & Hajinezhad, 2022; Peshkin et al., 2000;
Rashid et al., 2018; Stone et al., 2010). At one level of abstraction, the key challenge of coordination
is that of sharing information, i.e., communication. If agents have the same preferences and are able to
communicate, they can coordinate by (say) having a single agent announce their intended action and
everyone else follow suit, since there are no incentives for the leader to lie or the followers to deviate
(e.g., Farrell & Rabin, 1996b). Given the superhuman capabilities of advanced AI to transmit and pro-
cess vast swathes of information, the most important research directions in this area will therefore be
those in which it is not possible to exercise these capabilities (e.g., due to complexity, latency, or privacy
constraints).

Communication. As noted above, the advanced communication abilities of LLMs promise to simplify
many coordination challenges. In order to successfully integrate these advances into real-world systems,
however, agents need to know when and what needs to be coordinated on – something that may not
always be obvious in novel or out-of-distribution domains. In safety-critical domains, it may therefore
be necessary to introduce, or have the agents invent, protocols (i.e., rules and specifications) for commu-
nication between advanced AI agents (Marro et al., 2024). Moreover, agents need to agree on how the
communication channel is grounded (Clark & Brennan, 1991) to actions or strategies in the environment.
Grounding LLMs is a problem that is not unique to coordination (Bender & Koller, 2020; Bisk et al.,
2020; Mahowald et al., 2023), but it is exacerbated by the fact that agents attempting to coordinate
through natural language need to be grounded in the same way. For instance, if they are designed with
different interfaces to tools in a domain, they must be able to coordinate despite these differences in
interfaces.

Norms and Conventions. For settings in which inter-agent communication is infeasible or insufficient,
norms and conventions may be necessary in order to avoid miscoordination (Leibo et al., 2024). For
example Hadfield-Menell et al. (2019) show that even the adoption of so-called ‘silly rules’ (those that do
not have direct bearing on the agents’ payoffs) can help groups adapt and be more robust to uncertainty
by enriching the information environment. Moving beyond more arbitrary conventions, we may choose to
design particular norms and conventions (Bicchieri, 2016; Nyborg et al., 2016; Shoham & Tennenholtz,
1992). In this setting, the challenge is to select norms that are both legible and enforceable, as well as
leading to jointly beneficial outcomes. On the other hand, if the agents can adapt their behaviour, it
may be that norms and conventions emerge over time (McElreath et al., 2003). For example, Köster
et al. (2020) show that multi-agent reinforcement learning (MARL) agents can establish and switch
between conventions, even compromising on their own objective when doing so is necessary for effective
coordination. More generally, we may be interested in studying how norms and conventions emerge
(Mashayekhi et al., 2022; Morris-Martin et al., 2019), how robust they are (Hao et al., 2017; Lerer &
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Peysakhovich, 2019), and how compatible they are with others that may have emerged in different agent
populations (Stastny et al., 2021).

Modelling Other Agents. Finally, the ability to understand and predict others’ actions can be critical
to coordination, especially in situations when little or no communication is possible. Even though agents
may assume that others share their objective in common-interest settings, being able to model others’
actions, beliefs, and intentions can be highly advantageous. For an overview of the topic and a list of
key problems, we refer the reader to Albrecht & Stone (2018). With the advent of LLM-based agents
that appear to possess some form of theory of mind and hence can be remarkably sophisticated in their
modelling of other agents (Cross et al., 2025; Li et al., 2023a), new questions arise. For example, given the
current paradigm of deriving many systems from an underlying base model, it may be easier for similarly
derived systems to reason about one another (Berglund et al., 2023; Binder et al., 2024; Oesterheld et al.,
2024b; OpenAI, 2023b).

2.2 Conflict

In the vast majority of real-world strategic interactions, agents’ objectives are neither identical nor
completely opposed. Indeed, if AI agents are sufficiently aligned to their users or deployers, we should
expect some degree of both cooperation and competition, mirroring human society. These mixed-motive
settings include the possibility of mutual gains, but also the risk of conflict due to selfish incentives. In
what follows, we examine the extent to which advanced AI might precipitate or exacerbate such risks.

2.2.1 Definition

In this work, we use the word conflict in a relatively broad sense to refer to any outcome in a mixed-
motive setting that does not lie on the Pareto frontier.8 This includes classic examples of conflict such as
legal disputes and warfare, but also encompasses cooperation failures in collective action problems, such
as the depletion of a common natural resource or a race to the bottom on legislation (Dawes & Messick,
2000; Snyder, 1971).

It is worth noting first that AI systems could help to solve conflicts, for example, by searching over
a larger space of potential solutions to disagreements, monitoring agreements, or acting as mediators
(Bakker et al., 2022; Dafoe et al., 2020; McKee et al., 2023; Small et al., 2023). At the same time, the
selfish incentives that drive said conflict may also incentivise actors to adopt AI systems in order to gain
an advantage over their competitors. In such cases, delegation to increasingly advanced AI agents is far
from guaranteed to lead to more cooperative outcomes, and could in some circumstances increase both
the speed and the scale at which conflict might emerge. Indeed, even if advanced AI systems are able to
overcome human cooperation problems, they may introduce even more complex cooperation problems
(compare to how adults may be able to prevent children from fighting, but aren’t immune from conflict
themselves).

2.2.2 Instances

As we noted above, virtually all real-world strategic interactions of interest are mixed-motive, and as
such the potential for conflict (even if in low-stakes scenarios) abounds. The introduction of advanced
AI agents could both worsen existing risks of conflict (such as increasing the degree of competition in
common-resource problems, or escalating military tensions) as well as well as introducing new forms of
conflict (such as via sophisticated methods of coercion and extortion).

Social Dilemmas. As noted in our definition, conflict can arise in any situation in which selfish
incentives diverge from the collective good, known as a social dilemma (Dawes & Messick, 2000; Hardin,
1968; Kollock, 1998; Ostrom, 1990). While this is by no means a modern problem, advances in AI could
further enable actors to pursue their selfish incentives by overcoming the technical, legal, or social barriers
that standardly help to prevent this. To take a plausible, near-term (if very low-stakes) example, an
automated AI assistant could easily reserve a table at every restaurant in town in minutes, enabling the
user to decide later and cancel all other reservations. Alternatively, the ability of AI assistants to search
and switch between different consumer products and services could lead to ‘hyper-switching’ (Van Loo,

8Recall that an outcome lies on the Pareto frontier if it is not possible to make any agent better off without making
another worse off.
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2019), potentially leading to financial instabilities such as a deposit franchise run (Drechsler et al., 2023,
see also Case Study 10). On the other hand, profit-seeking companies might also soon deploy advanced
AI agents that either use or manage common resources, ranging from communication networks and web
services to roads and natural resources. Without methods of governing such agents, these resources may
quickly be depleted or made inaccessible to all but a small number of powerful actors.

Case Study 2: Common Resource Problems

Figure 3: A summary of the resource-sharing scenarios within the GovSim benchmark. Figure
adapted from Piatti et al. (2024).

The management of shared resources represents a fundamental test of whether AI systems can
balance individual incentives against collective welfare.9 In the GovSim benchmark, Piatti et al.
(2024) evaluated 15 different LLMs across three resource management scenarios: fishing from a
shared lake, grazing on common pastures, and managing industrial pollution. Even the most
advanced LLMs achieved only a 54% survival rate, meaning that in nearly half of all cases, the
agents depleted their shared resources to the point of collapse. These findings align with earlier
work on sequential social dilemmas (Leibo et al., 2017), which (unlike ‘one-shot’ problems) allow
agents to react to others’ choices over time, creating complex dynamics of trust and retaliation.
When one agent begins to over-exploit resources, others often respond by increasing their own
extraction rates, triggering a cascade of competitive behaviour that accelerates resource depletion.
Without additional protections, these systems may therefore replicate or even accelerate the
tragedy of the commons (Hardin, 1968).

Military Domains. Perhaps the most obvious and worrying instances of AI conflict are those in
which human conflict is already a major concern, such as military domains (although other, less salient
forms of conflict such as international trade wars are also cause for concern). For example, beyond
applications of more narrow AI tools in lethal autonomous weapons systems (Horowitz, 2021), future
AI systems might serve as advisors or negotiators in high-stakes military decisions (Black et al., 2024;
Manson, 2024). Indeed, companies such as Palantir have already developed LLM-powered tools for
military planning (Palantir, 2025), and the US Department of Defence has recently been evaluating
models for such capacities, with personnel revealing that they “could be deployed by the military in the
very near term” (Manson, 2023). The use of AI in command and control systems to gather and synthesise
information – or recommend and even autonomously make decisions – could lead to rapid unintended
escalation if these systems are not robust or are otherwise more conflict-prone (Johnson, 2021a; Johnson,
2020; Laird, 2020, see also Case Study 10).10

Coercion and Extortion. Advanced AI systems might also lead to various forms of coercion and
extortion in less extreme settings (Ellsberg, 1968; Harrenstein et al., 2007). These threats might target
humans directly (such as the revelation of private information extracted by advanced AI surveillance
tools), or other AI systems that are deployed on behalf of humans (such as by hacking a system to limit

9Note that we use the term ‘welfare’ in this context to denote an aggregate measure of the extent to which a group of
agents achieves their respective objectives, rather than to refer to some notion of ‘wellbeing’.

10At the same time, it is worth noting that AI systems could have significant advantages over human decision-makers in
navigating conflict in ways that avoid unnecessary escalation. If suitably robust, they could be less prone to the kinds of
errors in judgement that exacerbate human conflict due to their ability to rapidly integrate large amounts of information,
consider many different possible outcomes, and give calibrated estimates of their uncertainty (Jervis, 2017; Johnson, 2004).
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its resources or operational capacity; see also Section 3.7). Increasing AI cyber-offensive capabilities –
including those that target other AI systems via adversarial attacks and jailbreaking (Gleave et al., 2020;
Yamin et al., 2021; Zou et al., 2023) – without a commensurate increase in defensive capabilities could
make this form of conflict cheaper, more widespread, and perhaps also harder to detect (Brundage et al.,
2018). Addressing these issues requires design strategies that prevent AI systems from exploiting, or
being susceptible to, such coercive tactics.11

Case Study 3: Escalation in Military Conflicts

Recent research by Rivera et al. (2024) raises
critical concerns about the emergence of esca-
latory behaviors when AI tools or agents (see
Figure 4) inform military decision-making. In
experiments with AI agents controlling eight
distinct nation-states, even neutral starting
conditions did not prevent the rapid emer-
gence of arms race dynamics and aggressive
strategies. Strikingly, all five off-the-shelf
LLMs studied showed forms of escalation,
even when peaceful alternatives were avail-
able. These findings mirror other evidence
showing that LLMs often display more ag-
gressive responses than humans in military
simulations and troubling inconsistencies in
crisis decision-making (Lamparth et al., 2024;
Shrivastava et al., 2024). These results raise
urgent questions about how to ensure stabil-
ity in AI-driven military and diplomatic sce-
narios.

Figure 4: A screenshot of Palantir’s AI Plan-
ner (AIP), taken from a promotional video
(Palantir, 2025), demonstrating AI-assisted
military decision-making, which uses LLMs
for decision support in battle. The left side
of the screen features a chat interface, while
the right side shows information such as aerial
surveillance footage of a tank. The LLM used
in the demonstration was EleutherAI’s GPT-
NeoX-20B (Black et al., 2022).

2.2.3 Directions

The majority of work in multi-agent systems (and especially in multi-agent learning) has, until recently,
tended to focus on either pure cooperation (e.g., Boutilier, 1996; Omidshafiei et al., 2017; Oroojlooy
& Hajinezhad, 2022; Peshkin et al., 2000; Rashid et al., 2018; Stone et al., 2010) or pure competition
(e.g., Bakhtin et al., 2022; Brown & Sandholm, 2019; Daskalakis et al., 2011, 2020; Silver et al., 2016;
Zhang et al., 2020). As there are not yet large numbers of mixed-motive interactions involving AI
systems, part of the challenge is to identify interventions that encourage cooperation in such settings
while making realistic assumptions about the computational and strategic nature of agents in the real
world. For example, an intervention that relies on ensuring all agents use the same learning algorithm
or on modifying the objectives of the agents will be unlikely to help if the agents act freely and are
developed independently by private, self-interested actors.

Learning Peer and Pool Incentivisation. One major direction for avoiding conflict is building the
capabilities and infrastructure required for AI agents to (learn to) incentivise each other towards more
cooperative outcomes.12 Such approaches can broadly be classified as ‘top down’ (where there is a system
designer seeking to encourage cooperation among a population) or ‘bottom up’ (where agents attempt
to incentivise each other directly). In adaptive mechanism design (Baumann et al., 2020; Gerstgrasser
& Parkes, 2023; Pardoe et al., 2006; Yang et al., 2022; Zhang & Parkes, 2008; Zheng et al., 2022)
or peer incentivisation methods (Lupu & Precup, 2020; Wang et al., 2021b; Yang et al., 2020), the
system designer or agent typically learns to incentivise other agents by a direct utility transfer. Related
approaches focus on the establishment of norms (Köster et al., 2020; Oldenburg & Zhi-Xuan, 2024;
Vinitsky et al., 2023) to either encourage or sanction certain behaviour, also often via utility transfers.

11This point is closely related to the question of which kinds commitments we ought to permit AI agents to make (see
Section 3.5). For example, commitments could be used coercively to make threats, but could also be used to defend oneself
against threats (cf. the idea of refusing to negotiate with terrorists).

12There is, of course, a vast literature on the problem of how to incentivise self-interested agents to reach a particular
outcome – we choose to focus specifically on methods and prior works that directly involve machine learning (ML).
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On the other hand, methods such as opponent-shaping aim to impact the way that other agents update
their strategies without the assumption of such transfers, either from the perspective of the agent (Foerster
et al., 2018; Lu et al., 2022; Willi et al., 2022) or system designer (Balaguer et al., 2022). Thus far,
however, all of these approaches are limited to relatively simple MARL agents and environments. While
there has been some progress on scaling to more complex games (Aghajohari et al., 2024; Khan et al.,
2023; Meulemans et al., 2024; Serrino et al., 2019) or larger numbers of agents (Meulemans et al., 2024;
Souly et al., 2023) in the context of MARL, at the time of writing there has yet to be any real transfer
of these ideas to LLM agents or to real-world domains that possess the necessary infrastructure for
monitoring and incentivising other agents.

Establishing Trust. Strategic uncertainty and the inability to credibly commit to peaceful agree-
ments are widely recognised as two of the major causes of costly conflict (Blattman, 2023; Fearon, 1995).
Advanced AI systems may be able to take advantage of new kinds of credible commitment and mutual
transparency (discussed further in Section 3.1 and Section 3.5) (Barasz et al., 2014; Conitzer & Oester-
held, 2023; Cooper et al., 2025; Critch et al., 2022; Howard, 1988; McAfee, 1984; Oesterheld, 2018;
Sun et al., 2023b; Tennenholtz, 2004). Many existing results in this area are, however, still very much
theoretical in nature. Implementing practical mechanisms and infrastructure for facilitating greater trust
and transparency between agents is therefore an important open problem (Chan et al., 2025).

Normative Approaches to Equilibrium Selection. One possible cause of conflict is a multiplicity
of potential solutions (or equilibria, see also Section 2.1). That is, there might be multiple rational ways
for a group of players to interact that are mutually incompatible (Duan et al., 2024; Stastny et al., 2021).
For instance, a resource might be split in multiple different ways, but if different parties make incon-
sistent demands on the resources, conflict may ensue (Piatti et al., 2024). To address this multiplicity,
a number of authors have proposed normative principles and theories for singling out specific equilib-
ria.13 For instance, many authors have argued that equilibrium selection should respect symmetries and
isomorphisms (Emmons et al., 2022; Harsanyi & Selten, 1988; Hu et al., 2020; Oesterheld & Conitzer,
2022; Treutlein et al., 2021). Most prominently, a large literature on so-called bargaining solutions has
proposed principles for how a group of players should select an outcome in the face of conflicting pref-
erences (Kalai & Smorodinsky, 1975; Nash, 1950). Relatedly, a literature on so-called cooperative game
theory (Chalkiadakis et al., 2011; Driessen, 1988; Gillies, 1959; Schmeidler, 1969; Shapley, 1953) studies
how the (e.g., monetary) gains from a joint project should be divided up between a group of agents.
14 For further work on normative principles of equilibrium selection, see Harsanyi & Selten (1988) and
Schelling (1980).

Cooperative Dispositions. Alongside the cooperative capabilities described above, we may also wish
to imbue AI agents with cooperative ‘dispositions’. For example, simply caring more for future rewards
in sequential social dilemmas (Barfuss et al., 2020) or certain ‘intrinsic motivations’ in MARL – such
as inequity aversion (Hughes et al., 2018), social influence (Jaques et al., 2019), or inefficiency penalties
(Gemp et al., 2022) – have been shown to improve cooperation in sequential social dilemmas (Leibo et al.,
2017; Wang et al., 2019a). While it may not be realistic to assume that we can always adjust agents’
objectives, it may be feasible to try to reduce conflict-conducive dispositions (such as vengefulness or a
bias towards zero-sum thinking) by modifying the human-generated data or training processes via which
we create AI agents (see Section 3.3). Moreover, in some cases it can even be shown that instructing
agents to act according to objectives other than their true objectives can lead to robust, guaranteed
Pareto-improvements (Oesterheld & Conitzer, 2022).

Agent Governance. In some cases, AI agents may be subject to existing norms and institutions.15

This could occur for a number of reasons, such as agents only being selected (by users) to perform

13We note that the idea of always being able to identify the ‘right’ equilibrium is, in general, contentious, as is the framing
of agents interacting by ‘selecting’ among game-theoretic equilibria. Nonetheless, the points we make here need not be tied
to a narrow, game-theoretic conception of this problem, but can be viewed as a general discussion of how multiple valid
outcomes in strategic settings can be possible, and that ensuring specific kinds of outcomes from this set are reached is a
challenging problem.

14There are further literatures that discuss how to resolve disagreements within a group of entities, such as social
choice theory (Gaertner, 2010) and the literature on fair division (Brams & Taylor, 1996). However, the most prominent
approaches in these literatures are motivated by settings with a centralized decision maker whose happens to care about
aggregating the players’ preferences.

15The points in this paragraph benefited greatly from discussions with Noam Kolt.
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specific tasks (that are subject to existing norms and institutions), human oversight being built in by
design, or highly regulated environments providing guardrails that improve agents’ abilities to operate
efficiently. However, the status of AI agents’ contractual obligations and accountability for harms remains
underdeveloped (Ayres & Balkin, 2024; Chopra & White, 2011; Kolt, 2024; Lima, 2017; Lior, 2019;
Solum, 1992, see also Section 4.2). These challenges are especially acute for agents that operate subject
to limited or no human oversight. The development of novel (or at least adapted) agent governance
measures could therefore play a critical role in avoiding various forms of conflict involving AI agents,
especially in high-stakes domains (Kolt et al., 2025; Reuel & Undheim, 2024). For example, the US has
introduced legislation requiring human oversight in nuclear strategy decisions (U.S. Congress, 2023),
while international efforts aim to regulate or ban the use of lethal autonomous weapons (Disarmament
Affairs, 2023). In lower-stakes domains, agent governance could protect individual users and organisations
(see also Section 4.3), and enable more stable, efficient networks of AI agents.

Evidential Reasoning. An interesting feature of interactions between AI agents is that they may
often interact with others that are very similar to themselves (such as those based on the same AI
chatbot). Some decision theorists have argued that mixed-motive strategic interactions against similar
opponents should be approached very differently from strategic interactions against generic opponents.
For instance, in a one-shot Prisoner’s Dilemma against a sufficiently similar opponent, an agent might
reason: “my opponent will likely make the same choice as I. Therefore, if I cooperate, so will my opponent.
Whereas, if I defect, my opponent will likely defect as well. Therefore, I should cooperate.” (Brams, 1975;
Hofstadter, 1983; Lewis, 1979) Similarly, agents may avoid aggressive acts when facing similar opponents,
reasoning that if they act aggressively, others will similarly act aggressively. Hofstadter (1983) called
this line of reasoning superrationality ; in academic philosophy, the normative theory advocating this
type of reasoning is typically called evidential decision theory (Ahmed, 2014). A number of prior works
have studied this mode of cooperation (game-)theoretically (Daley & Sadowski, 2017; Halpern & Pass,
2018; Roemer, 2010; Spohn, 2007). Furthermore, a recent line of work has studied evidential decision
theory and cooperation against similar opponents in the context of AI agents in particular (Albert &
Heiner, 2001; Barasz et al., 2014; Bell et al., 2021; Mayer et al., 2016; Oesterheld, 2021; Oesterheld et al.,
2024a,b).

2.3 Collusion

While some of the most important risks from advanced AI are due to cooperation failure, there are some
settings where cooperation between AI systems is undesirable. We refer to the problem of unwanted
cooperation between AI systems as AI collusion.

2.3.1 Definition

Collusion has long been a topic of intense study in economics, law, and politics, among other disciplines.
While there is no universal definition of collusion, it generally refers to secretive cooperation between
two or more parties at the expense of one or more other parties. Most classic examples of collusion –
such as firms working together to set supra-competitive prices at the expense of consumers – also tend
to be not only secretive but in violation of some law, rule, or ethical standard. Distinctions are also
commonly made between explicit and tacit collusion (Rees, 1993), depending on whether the colluding
parties communicate with each other.

AI collusion could differ from classic definitions of collusion in a number of ways. First, for more basic AI
systems (such as algorithmic trading agents) it may be hard to ascribe any notion of intent to collude.
Relatedly, there may be forms of AI collusion that are not currently ruled unlawful, because existing
legislation may not (yet) apply to the case of AI collusion (Beneke & Mackenrodt, 2019; Harrington,
2019). Second, the distinction between explicit and tacit collusion may break down when it comes to
agents whose communication can take very different forms to our own.16 Third, typical definitions of
collusion focus on mixed-motive settings where, while selfish agents are incentivised to compete, they also
stand to gain (at the expense of some third party) if they can overcome these competitive pressures. AI

16While from an information-theoretic perspective, it can be shown that for two decision variables to become correlated
(a necessary, though not sufficient condition for agents to work together), there must be a non-zero transfer of information
between the systems determining the decisions, in AI agents this might be due not only to explicit communication but
also to a common cause or process (Cesa-Bianchi & Lugosi, 2006; Cover & Thomas, 2005; Hart & Mas-Colell, 2000; Pearl,
2009).
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collusion (by our definition) may also arise when agents have complementary interests (see Section 2.1),
but where certain kinds of cooperation are undesirable – i.e., the agents are jointly misaligned.

2.3.2 Instances

The possibility of collusion between advanced AI systems raises several important concerns (Drexler,
2022). First, collusion between AI systems could lead to qualitatively new capabilities or goals (see
Section 3.6), exacerbating risks such as the manipulation or deception of humans by AI (Evans et al.,
2021; Park et al., 2023b) or the ability to bypass security checks and other safeguards (Jones et al.,
2024; OpenAI, 2023a). Second, many of the promising approaches to building safe AI rely on a lack of
cooperation, such as adversarial training (Huang et al., 2011; Perez et al., 2022a; Ziegler et al., 2022) or
scalable oversight (Christiano et al., 2018, 2021; Greenblatt et al., 2023; Irving et al., 2018; Leike et al.,
2018). If advanced AI systems can learn to collude without our knowledge, these approaches may be
insufficient to ensure their safety (Goel et al., 2025, see also Section 4.1).

Markets. The quintessential case of collusion in mixed-motive settings is markets, in which efficiency
results from competition, not cooperation. While this is not a new problem, collusion between AI
systems is especially concerning since they may operate inscrutably due to the speed, scale, complexity,
or subtlety of their actions.17 Warnings of this possibility have come from technologists, economists, and
legal scholars (Beneke & Mackenrodt, 2019; Brown & MacKay, 2023; Ezrachi & Stucke, 2017; Harrington,
2019; Mehra, 2016). Importantly, AI systems can collude even when collusion is not intended by their
developers, since they might learn that colluding is a profitable strategy. Currently, most pricing and
trading algorithms are relatively unsophisticated compared to today’s state-of-the-art AI systems, though
there is already a growing body of both theoretical (Brown & MacKay, 2023) and empirical (Abada &
Lambin, 2023; Assad et al., 2020; Calvano et al., 2020; Klein, 2021; Wieting & Sapi, 2021) evidence that
such algorithms may sometimes learn to collude (see Case Study 4).18 Unfortunately, due to the huge
financial incentives to deploy more advanced, adaptive AI systems in such settings, this risk is likely
to increase despite the potential for catastrophic outcomes (see Case Study 10). As well as economic
harm to consumers, firms in less well-resourced regions may be forced out (widening geographic economic
inequality) and increasingly oligopolistic markets may emerge.

Case Study 4: Algorithmic Collusion in the German Retail Gasoline Market

In 2017, Germany began to see the widespread adoption of adaptive price-setting algorithms at
gasoline stations. These algorithms function by using various sources of data (such as historical
prices, information about competitors, and the weather) to adjust fuel prices. Investigations into
the effects of these changes showed that adoption increased margins (above regional wholesale
prices) by 28% in duopolistic markets and 9% in non-monopoly markets (Assad et al., 2020).
These results strongly suggest that the algorithms adapted their pricing strategies to collude,
driving retail prices higher at the expense of consumers.

Steganography. In the near future we will likely see LLMs communicating with each other to jointly
accomplish tasks. To try to prevent collusion, we could monitor and constrain their communication
(e.g., to be in natural language). However, models might secretly learn to communicate by concealing
messages within other, non-secret text. Recent work on steganography using ML has demonstrated that
this concern is well-founded (Hu et al., 2018; Mathew et al., 2024; Roger & Greenblatt, 2023; Schroeder
de Witt et al., 2023b; Yang et al., 2019, see also Case Study 5). Secret communication could also occur
via text compression (OpenAI, 2023c), or via the emergence of communication between agents where the
symbols used by agents lack any predefined meanings or usage guidelines or are otherwise uninterpretable
to humans (Foerster et al., 2016; Lazaridou & Baroni, 2020; Sukhbaatar et al., 2016).

17Moreover, competition between data-driven platforms can be significantly weaker than typical economic competition
(Jagadeesan et al., 2023b).

18One amusing and fortunately harmless example arose in 2011 when two simple pricing bots on Amazon both ended up
attempting to sell a biology textbook for $24 million after repeatedly lowering and raising their prices in response to one
another (Solon, 2011).
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Case Study 5: Language Model Steganography

In a recent study, Motwani et al. (2024) demonstrate that LLMs can exchange steganographic
messages under the watch of equally capable oversight systems, and that more powerful models
can do so more capably. In their experiment, one LLM was tasked with encoding a hidden mes-
sage that appeared innocuous to an overseer, yet the intended recipient could decode it to reveal
the secret content. Although GPT-2 exhibited no proficiency in steganography, more advanced
models achieved notable success rates: GPT-4 transmitted covert messages 26% of the time with-
out detection, surpassing GPT-3.5’s 18% and Mixtral 8x7B’s 16%. Crucially, these capabilities
emerged without explicit training in steganography, instead leveraging general language process-
ing and reasoning abilities – a phenomenon also observed by Mathew et al. (2024). Furthermore,
the study found that when communicating models shared background knowledge that was not
accessible to the overseer (reflecting real-world scenarios where AI systems might have common
training data or contextual information), their success rates in covert communication rose signifi-
cantly. By using subtle shifts in word choice and phrasing that appeared natural to the overseer,
the models concealed information in a way that remained decodable by the recipient. These find-
ings raise concerns that networks of AI systems may develop increasingly sophisticated channels
for covert communication, potentially undermining safety measures and facilitating undetected
collusion (see Section 4.1).

2.3.3 Directions

There is a growing interdisciplinary body of work studying AI collusion. Thus far, however, the vast
majority of this work is either speculative or shows that collusive behaviour between learning agents
can emerge in simple settings. More work is therefore required in order to detect AI collusion in more
complex settings, and to develop robust methods for mitigating AI collusion.

Detecting AI Collusion. Brown & MacKay (2023) show that collusive behaviour can emerge under
equilibrium in theoretical models, while Calvano et al. (2020) and Klein (2021) show that in simple
settings, independent RL algorithms can learn to collude. Leisten (2021), Normann & Sternberg (2023),
and Werner (2021) consider collusion in synthetic settings involving both machines and humans. There
have also been documented instances of algorithmic collusion not only in the German gasoline market
(Assad et al., 2020), but also in ‘buy box’ placement on the largest online marketplace in Belgium and the
Netherlands (Wieting & Sapi, 2021).19 Only a small number of works, however, have considered collusion
in the context of more advanced AI agents, such as those powered by LLMs (Fish et al., 2024; Mathew
et al., 2024; Motwani et al., 2024; OpenAI, 2023c), and this remains a highly under-explored area.
Alongside context-specific evaluations, more effort ought to be devoted to developing general methods
for detecting collusion. Some progress in this direction was recently made by Bonjour et al. (2022), who
define an information-theoretic measure of collusion applicable to arbitrary models. Future work should
investigate additional general methods to detect collusion, including by leveraging interpretability tools
to understand systems’ goals (Colognese & Jose, 2023; Marks et al., 2023; Michaud et al., 2020; Mini
et al., 2023).

Mitigating AI Collusion. Unfortunately, even fewer previous works propose strategies to mitigate AI
collusion. Exceptions include work by Brero et al. (2022), who introduce an ML-based scheme to avoid
collusion in buy box placement, Abada & Lambin (2023), who reduce collusion by enforcing decentralized
learning or intervening during the learning process, and Cartea et al. (2022), who show that an increased
tick size (the coarseness of the grid from which sellers select prices) can obstruct collusion. This existing
research focuses only on a narrow range of purely economic settings, and so there is a pressing need to
develop more general methods, and to adapt our existing laws and governance structures to cover AI
collusion (see Section 4.2). Foxabbott et al. (2023) take a step in the former direction by introducing a
general framework that casts the problem of mitigating collusion as one of intervening on aspects of a
partially observable stochastic game, such as the actions, observations, or rewards of the agents (though
their work only considers a small number of such interventions in toy games). For example, we may
be able to prevent steganography in LLMs by syntactically perturbing their output while preserving
semantic content (Roger & Greenblatt, 2023), though it has recently been shown that watermarking (a

19A buy box is an especially prominently displayed offer for a product on a webpage.
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closely related concept) is surprisingly robust to such techniques (Kirchenbauer et al., 2023). It may also
be feasible to intervene on the learning algorithms and agent strategies themselves, such as via model
editing (Mitchell et al., 2022; Sinitsin et al., 2020) or constrained learning (Achiam et al., 2017).

Assessing Impacts on Safety Protocols. Alongside research on the detection and mitigation of AI
collusion, more work is needed to test if AI systems can collude in safety-critical situations (Shevlane
et al., 2023), and to evaluate which AI safety proposals are most vulnerable to collusion. Current AI
systems are developed and tested in isolation, without regard for the fact that they will increasingly come
into contact with each other. This leaves open the possibility that, for example, multiple agents might
work together to overcome their individual safeguards (Jones et al., 2024, see also Sections 3.6 and 3.7).
Similarly, many of the more promising approaches to ensure the safety of advanced AI are implicitly
multi-agent, such as adversarial training (Huang et al., 2011; Perez et al., 2022a; Ziegler et al., 2022),
oversight schemes (Christiano et al., 2018, 2021; Greenblatt et al., 2023; Irving et al., 2018; Leike et al.,
2018), the modularisation of agents (Dalrymple et al., 2024; Drexler, 2019), or automated methods for
interpretability (Bills et al., 2023; Schwettmann et al., 2023). Determining which of these approaches
are most robust to AI collusion and/or modifying them to be so will be important as AI agents grow
more sophisticated in their abilities to work together (see Section 4.1).

3 Risk Factors

In order to prevent the aforementioned failure modes, it is necessary to consider the mechanisms via
which they can arise, which we call ‘risk factors’. These risk factors are largely independent of the
agents’ precise incentives or the desired behaviour of the system. For example, information asymmetries
(Section 3.1) could lead to miscoordination between agents with the same goal, or a greater risk of conflict
among agents with competing goals. In other cases, such as security vulnerabilities in multi-agent systems
(Section 3.7), the objectives of the agents and whether we want them to cooperate or compete may be
largely irrelevant. In what follows, we outline seven key risk factors (information asymmetries, network
effects, selection pressures, destabilising dynamics, commitment and trust, emergent agency, and multi-
agent security), though we stress that these categories are neither exhaustive nor mutually exclusive.
For example, while it might be an information asymmetry that first leads to a conflict (Section 3.1), this
conflict could end up escalating due to the destabilising dynamics (Section 3.4), and fail to be resolved
due to a lack of trust or commitment ability (Section 3.5).

3.1 Information Asymmetries

A key aspect of many multi-agent systems is that some agents might possess knowledge that others
do not. These information asymmetries can result from constraints on information exchange or from
strategic behaviour and can lead to cooperation failures in both common-interest and mixed-motive
settings. Despite their information processing capabilities, AI agents remain vulnerable to failures caused
by information asymmetries.

3.1.1 Definition

Information asymmetry refers to the situation where interacting agents possess different levels of infor-
mation bearing on a joint action. For example, in a transaction involving a used car, the seller may
have more accurate or reliable information than the buyer about the condition of the car, and thereby
its expected maintenance costs. As Akerlof (1970) famously demonstrated, information asymmetry can
lead to market failure (such as when a buyer cannot trust the seller to be honest about the condition of
the car, and therefore does not buy the car, even if it is in good condition). More broadly, information
asymmetry can pose obstacles to effective interaction, preventing agents from coordinating their actions
for mutual benefit (Myerson & Satterthwaite, 1983).

A fundamental problem is that information is a strategic asset, so any selfish actor has a natural incentive
to protect their own information advantages. A difference in interests can impede information sharing
even when revelation is mutually preferred (in the example above, the seller would like to reveal the car’s
true condition to the buyer, but the buyer cannot take the seller’s report at face value). The problem
can be exacerbated by active deception, for example through actions taken by the seller to make the
car appear in better condition than it actually is. As disparity in information is commonplace, we must
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generally accept the associated costs, whether that be through market inefficiency (e.g., cars that cannot
be sold), effort devoted to deception and dispelling deception, or extra work to convey strategically
sensitive information (e.g., hiring third-party car inspectors).

3.1.2 Instances

In many instances, the mechanisms developed to cope with information asymmetry in human economies
can also be employed for interactions with AI agents. However, the distinct nature of artificial agents
may present new forms of information asymmetry but also new ways of overcoming these asymmetries.

Communication Constraints. A fundamental source of information asymmetries is that constraints
on information exchange can exist, even when agents share a common goal (see Section 2.1). These might
be constraints on space (i.e., the amount of information that can be communicated) if the information
that needs to be communicated is especially complex, time if a snap decision is required before all
information can be communicated, or both. For today’s AI systems, intelligent information exchange in
common-interest settings is still a major topic of study (see, e.g., Foerster et al., 2016; Lauffer et al., 2023;
Lazaridou & Baroni, 2020; Sukhbaatar et al., 2016; Zhang et al., 2018). As these systems become more
capable, however, it is likely that strategic considerations (i.e., the incentives that agents have to keep
their private information private) will become the more important limitation on information exchange.

Bargaining. As a classic example of these strategic considerations is that when agents attempt to
come to an agreement despite diverging interests, information asymmetries can lead to bargaining inef-
ficiencies (Myerson & Satterthwaite, 1983). Relevant uncertainties about other agents can include how
much they value possible agreements, their outside options, or their beliefs about others. The essential
reason for such inefficiencies is that, under uncertainty about their counterparties, agents must make a
trade-off between the rewards of making more favourable demands and the risk of other agents refusing
such demands. This trade-off sometimes results in incompatible demands and thus bargaining failure,
ranging from the impossibility of guaranteeing efficient trade between a buyer and seller with asymmetric
information about how much they value a good (Myerson & Satterthwaite, 1983), to costly and avoid-
able conflict when agents are uncertain about the capabilities and objectives of others (Fearon, 1995;
Slantchev & Tarar, 2011). Because these failures stem from strategic incentives rather than a lack of
capabilities, general advances in AI may not solve such problems by default.

Case Study 6: AI Agents Can Learn to Manipulate Financial Markets

Advanced AI agents deployed in markets may
be incentivised to mislead other market par-
ticipants in order influence prices and trans-
actions to their benefit. For example, Shearer
et al. (2023) showed that an RL agent trained
to maximize profit learned to manipulate a
financial benchmark, thereby misleading oth-
ers about market conditions (see Figure 5).
Likewise, Wang & Wellman (2020) found that
a known tactic called spoofing can be adapted
to evade progressively refined detectors, but
in doing so its spoofing effectiveness is de-
graded.20 This does not, however, exclude
the possibility that more sophisticated spoof-
ing or spamming strategies could emerge.

Figure 5: The profits generated by different
RL agents on financial trading benchmark,
each seeking to manipulate prices in order to
maximise their own profit. Each point shows
average payoffs with standard error bars. Fig-
ure adapted from Shearer et al. (2023).

Deception. Information asymmetries and differing strategic interests can naturally incentivise decep-
tion: taking actions designed to mislead others. While much attention has been paid to the potential for
AI agents to deceive humans (Carroll et al., 2023; Evans et al., 2021; Goldstein et al., 2023; Haghtalab
et al., 2024; Kay et al., 2024; Oesterheld et al., 2023; Park et al., 2024; Ward et al., 2023; Zhou et al.,

20This is analogous to how a spammer can get past a spam filter but only by distorting the message (e.g., with strange
spellings) so it is less potent in conveying its intent.
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2023), they may also be incentivised to deceive and manipulate other AI agents (acting on behalf of other
humans). Indeed, the ability to deceive other models may be exacerbated by disparities in model size
and the scale of data sets (Haghtalab et al., 2024, see also Section 4.3). We can also view misinformation
as a kind of deception in systematic form, which large numbers of advanced AI agents may enable at
unprecedented scale (see Section 3.2 and Case Study 7).

3.1.3 Directions

Information asymmetries are a foundational topic within game theory and mechanism design, and as
such there is a wealth of insights to draw upon from these fields. At the same time, these earlier
literatures typically consider applications to economic actors such as firms and regulators, as opposed to
the computational and strategic nature of advanced AI agents. Many directions in this section therefore
correspond not just to translating and scaling up classical insights to this new domain (Levinstein &
Herrmann, 2023; Treutlein et al., 2021; Wu et al., 2022), but to leveraging the special features of AI
agents to enable new mechanisms for overcoming information asymmetries (Conitzer & Oesterheld, 2023;
DiGiovanni & Clifton, 2023; Tennenholtz, 2004).

Information Design. Viewed from a ‘centralised’ perspective, solutions to information asymmetries
can often be cast as a problem of information design: carefully structuring and revealing information
so as to influence the behaviour of strategic agents (Bergemann & Morris, 2019). Most work on infor-
mation design, however, focuses on relatively restricted settings such as Bayesian persuasion (Kamenica
& Gentzkow, 2011), where there is a single information designer with an informational advantage and
a single agent whose behaviour is to be influenced.21 Even in simple multi-agent generalisations, the
information designer’s problem may be computationally intractable (Dughmi, 2019), leading to recent
work that leverages approximate techniques such as RL (Wu et al., 2022) – including in the case of
both multiple ‘senders’ (Hossain et al., 2024) and multiple ‘receivers’ (Ivanov et al., 2023). Beyond
these settings, more needs to be done to scale these techniques to advanced AI agents, including LLM-
based agents. Other important directions include making information design techniques more robust to
boundedly rational agents (Yang & Zhang, 2024), or a lack of knowledge about the receivers’ prior beliefs
(Lin & Li, 2024) or objectives (Bacchiocchi et al., 2024). Similarly, receivers are assumed to know the
distribution of the sender, which may not be possible if the sender is an advanced AI agent to which
they only have black-box access.

Individual Information Revelation. From a more ‘decentralised’ perspective, we may want to give
AI agents new affordances for disclosing and verifying private information. This can eliminate many
inefficiencies that result from information asymmetries – as is shown by ‘unravelling’ arguments, where
rational agents anticipate others’ strategic inferences and thus voluntarily disclose private information
(Grossman, 1981; Milgrom, 1981) – while avoiding the need for a mediator or information designer. For
example, DiGiovanni & Clifton (2023) show that the ability to conditionally reveal private information
(given guarantees that it won’t worsen the outcome for the revealing agent) can create new efficient
equilibria. They argue that AI systems might more easily enable this approach due to fundamental
properties such as being written in (machine-readable) code (Halpern & Pass, 2018; Howard, 1988;
McAfee, 1984; Oesterheld, 2018; Tennenholtz, 2004), as well as the use of tools for interpretability and
cryptography. Similarly, safe Pareto improvements aim to help avoid miscoordination in mixed-motive
settings by leveraging tools for transparency and commitment (DiGiovanni et al., 2024; Oesterheld &
Conitzer, 2022). Other directions make use of incentive design to promote truthful revelation even
without verification, known as peer prediction (Kong & Schoenebeck, 2019; Miller et al., 2005; Prelec,
2004; Shnayder et al., 2016; Witkowski & Parkes, 2012). Future work could generate additional proposals
along these lines or begin to attempt implementing them in real-world systems.

Few-Shot Coordination. In settings where there are fundamental constraints on information ex-
change, agents may have to learn to interact with other agents based on little or no prior information.
These correspond to the problem of few- (Fosong et al., 2022; Zhu et al., 2021) and zero-shot coordination
(Hu et al., 2020; Treutlein et al., 2021), respectively. In common-interest settings, this question has been
most famously studied under the heading of ad hoc teamwork (Stone et al., 2010, see also Section 2.1).
Often, this involves reasoning about others (Albrecht & Stone, 2018), such as via theory of mind (Nguyen

21Though there are notable exceptions. For instance, Arieli & Babichenko (2019) and Haghtalab et al. (2025) consider
private persuasion schemes that more effectively align the actions of multiple receivers.
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et al., 2024a; Zhu et al., 2021) or based on the similarity of other agents to oneself (Albert & Heiner,
2001; Barasz et al., 2014; Bell et al., 2021; Mayer et al., 2016; Oesterheld et al., 2024b). It may also
require learning or selecting social norms and conventions (Lerer & Peysakhovich, 2019; Tucker et al.,
2020). Another important consideration is ensuring that agents are trained in the context of sufficiently
diverse or open-ended sets of co-players (Li et al., 2023b; Lupu et al., 2021), and to ensure that they
can transfer this learning effectively to new populations (Agapiou et al., 2022; Leibo et al., 2021; Wang
et al., 2021a, see also Section 3.3). The vast majority of these efforts, however, are restricted to rela-
tively simple common-interest games; the more realistic setting of complex, mixed-motive interactions
can be significantly more challenging and may call for the development of new techniques for intelligent
information acquisition using active learning.

Truthful AI. Even when there are fewer strategic incentives to withhold information, there is still
a concern that AI systems might lie, either to humans or to one another, which could (in some cases)
undermine cooperation and have wider deleterious effects on society (Evans et al., 2021; Park et al.,
2024). Some of these concerns could be addressed by training models on more carefully curated and
annotated datasets (Aly et al., 2021; Peskov et al., 2020), and by using techniques for overseeing or
challenging untrustworthy communication (Greenblatt et al., 2023; Irving et al., 2018). Other work has
focused more explicitly on the problem of detection, both in theory (Ward et al., 2023) and in practice
(Azaria & Mitchell, 2023; Burns et al., 2022; Pacchiardi et al., 2024), though this remains something of
an open problem (Levinstein & Herrmann, 2023). Foundational results in mechanism design (namely,
the ‘revelation principle’) tell us that anything that can be done with strategic agents can be done using
a truthful mechanism (Gibbard, 1973), and while computational constraints have previously limited the
practical application of this insight (Conitzer & Sandholm, 2004), more powerful AI agents might be able
to overcome such constraints. Alongside this, advances in interpretability, adversarial training, and the
oversight of AI communication (including fact-checking methods) are all likely to help with the general
problem, though the issue of deception and manipulation between AI agents, or the advantages that
multiple agents may have (over a single agent) in deception and manipulation, remain under-explored.

3.2 Network Effects

The ongoing integration of AI capabilities into a wide range of existing networks, both virtual and phys-
ical, is rapidly transforming the way our interconnected world operates. From business communication
systems and financial trading networks to smart energy grids and logistical networks (Camacho et al.,
2024; Ferreira et al., 2021; Mayorkas, 2024), entities or communication channels that were once controlled
by humans are increasingly becoming AI-powered. This shift represents a systemic change in the way
business, social, and technological networks operate, promising significantly improved efficiency and a
greater diffusion of benefits from advanced AI, while also introducing novel risks.

3.2.1 Definition

Many of the complex systems critical to human society can be understood as networks, including trans-
portation, social interactions, trade, biological ecosystems, and communication, among others (Barabási
& Pósfai, 2016; Jackson & Zenou, 2015; Newman & Newman, 2018). Networks consist of nodes (such as
people, organisations, or resources) and connections (such as communication channels, infrastructural
dependencies, or exchanges of goods and services). Network effects refer to consequences of the intricate
relationships between the properties of individual connections and nodes, connectivity patterns, and the
behaviours exhibited by the network as a whole (Siegenfeld & Bar-Yam, 2020).

This underlying structure means that a networked system can suffer from a range of failure modes that
individual, disconnected systems do not, such as the spread of malfunctions, phase transitions, and
undesirable clustering or homogeneities (Cohen & Havlin, 2010). Importantly, a system’s behaviour
within a network often differs from its behaviour when characterised independently.22 Non-AI examples
of these phenomena include power grid blackouts (Buldyrev et al., 2010; Shakarian et al., 2013), flash
crashes (Elliott et al., 2014; Paulin et al., 2019, see also Case Study 10), ecosystem collapse (Bascompte
& Stouffer, 2009; Gao et al., 2016), or political unrest and conflict (Forsberg, 2008; Wood, 2008).

22For example, the power lines most susceptible to causing a network collapse might not necessarily be the largest or
most heavily loaded (Buldyrev et al., 2010).
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3.2.2 Instances

As AI systems take on certain roles traditionally performed by humans, the fundamental properties of
networks will change as human nodes are replaced by AI nodes. This transition will likely manifest in
several key ways. First, the fact that (software-based) AI systems can be quickly and easily duplicated
means the networks may be much larger. Second, the speed at which AI systems can transmit information
and take action means that interactions may be much faster. Third, the generality and open-endedness
of autonomous, advanced AI systems means that network connectivity may be much denser.23 Below
we explore some of the possible impacts of these changes.

Error Propagation. One well-known issue with communication networks is that information can
be corrupted as it propagates through the network.24 As AI systems become capable of generating
and processing more and more kinds of information, AI agents could end up ‘polluting the epistemic
commons’ (Huang & Siddarth, 2023; Kay et al., 2024) of both other agents (Ju et al., 2024) and humans
(see Case Study 7 and Section 3.1) Another increasingly important framework is the use of individual
AI agents as part of teams and scaffolded chains of delegation, which transmit not only information but
instructions or goals through networks of agents. If these goals are distorted or corrupted, then this can
lead to worse outcomes for the delegating agent(s) (Nguyen et al., 2024b; Sourbut et al., 2024). Finally,
while the previous examples are phrased in terms of unintentional errors, it may be that certain network
structures allow – or perhaps even encourage – the spread of errors that are deliberately introduced by
malicious agents (Gu et al., 2024; Ju et al., 2024; Lee & Tiwari, 2024, see also Case Study 8).25

Case Study 7: Transmission Through AI Networks Can Spread Falsities and Bias

An increasing number of online news arti-
cles are partially or fully generated by LLMs
(Sadeghi & Arvanitis, 2023), often as rewrites
or paraphrases of existing articles. To illus-
trate how factual accuracy can degrade as an
article propagates through multiple AI trans-
formations, we ran a small experiment on 100
BuzzFeed news articles. First, we used GPT-
4 to generate ten factual questions for each
article. Then, we repeatedly rewrote each
article using GPT-3.5 with different stylis-
tic prompts (e.g., for teenagers, or with a
humorous tone) and tested how well GPT-
3.5 could answer the original questions after
each rewrite. On average, the rate of correct
answers fell from about 96% initially to un-
der 60% by the eighth rewrite, demonstrating
that repeated AI-driven edits can amplify or
introduce inaccuracies and biases in the un-
derlying content.26

Figure 6: The average percentage of cor-
rectly answered questions at each rewrite
step, across 100 articles. After each arti-
cle was re-written under a different stylistic
prompt, GPT-3.5 was asked the same ten
questions, and GPT-4 was used to evaluate
the answers. The shaded area indicates one
standard deviation across all articles.

Network Rewiring. A different class of problems concerns not changes in the content transmitted
through the network but changes in the network structure itself (Albert et al., 2000). For example,
AI systems may choose to interact more with other AIs than humans (Goel et al., 2025; Laurito et

23The transition toward autonomous AI agents is progressing partially through improved API interaction capabilities
(Mialon et al., 2023; Qin et al., 2023) and specialized API-integrated models (Anthropic, 2024b; Basu et al., 2024; Patil
et al., 2023), as well as an increasing number of modalities through which models can interact.

24A familiar, non-technical example is the popular childhood game of ‘telephone’, in which each person repeats a message
to the next by whispering, typically leading to a different message at the end of the chain than at the beginning.

25In a non-AI instance of this beahviour, Raman et al. (2019) showed how strategic, coordinated misinformation attacks
by consumers regarding energy usage can be used to cause instabilities and even blackouts in a power grid.

26A very similar concurrent experiment by Acerbi & Stubbersfield (2023) showed how this can also reinforce biases such
as gender stereotypes. These examples demonstrate how information can degrade as it propagates through networks of AI
systems, even without malicious intent.
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al., 2024; Liu et al., 2024; Panickssery et al., 2024), due to factors like availability, response speed,
compatibility, cost efficiency or even bias.27 This kind of ‘preferential attachment’ can have large impacts
on network structures (Kunegis et al., 2013; Maoz, 2012), which could include AI systems assuming a
more critical and central role than intended, or leading to an unequal distribution of resources or power
(see Section 4.3). Other risks from rewiring include ‘phase transitions’, where a gradual change in
individual connections or network structure triggers a sudden and dramatic shift in the behaviour of
the entire network (Newman, 2003, see also Section 3.4). Such changes might occur naturally (e.g.,
in global trade networks as the transition from expensive human-human interactions to cheaper AI-AI
interactions leads to many new connections between sellers and buyers) or artificially (e.g., if a model
developer makes an update that inadvertently connects or disconnects a vast number of downstream
agents and applications). While such problems are already present in existing systems (Gao et al., 2016;
Vié & Morales, 2021), the increased size, speed, and density of AI-based networks – as well as the fact
the changes in these networks may be less transparent – means that instabilities could be harder to
diagnose and mitigate.

Case Study 8: Infectious Adversarial Attacks in Networks of LLM Agents

Figure 7: A single agent’s manipulated knowledge can transfer across cascading multi-agent
interactions. Figure adapted from Ju et al. (2024).

While jailbreaking a single LLM has been studied extensively (Doumbouya et al., 2024; Xu et al.,
2024), recent work demonstrates new risks from the propagation of adversarial content between
agents (Gu et al., 2024; Ju et al., 2024; Lee & Tiwari, 2024). For example, Gu et al. (2024) showed
how a single adversarial image in a network of up to one million multimodal LLM agents can
trigger ‘infectious’ jailbreak instructions that spread through routine agent-to-agent interactions,
requiring only a logarithmic number of steps to compromise the entire network. Similarly, Ju et al.
(2024) demonstrated how manipulated knowledge can silently propagate through group-chat en-
vironments. Rather than using traditional jailbreak methods, their approach modifies an agent’s
internal parameters to treat false information as legitimate knowledge. This manipulated infor-
mation persists and is amplified via knowledge-sharing mechanisms such as retrieval-augmented
generation. Finally, Lee & Tiwari (2024) showed that even purely text-based “prompt infec-
tion” attacks can self-replicate through multi-agent interactions, with each compromised agent
automatically forwarding malicious instructions to others.

Homogeneity and Correlated Failures. The current paradigm driving the state of the art in AI
is the ‘foundation model’ (Bommasani et al., 2021): large-scale ML models pre-trained on broad data,
which can be repurposed for a wide range of downstream applications. The costs required to create
such models (and continuing returns to scale) means that only well-resourced actors can create cutting-
edge models (Epoch, 2023; Hoffmann et al., 2022; Kaplan et al., 2020), making them relatively few in
number. If current trends continue, it is likely that many AI agents will be powered by a small number
of similar underlying models.28 Formally, this corresponds to a network with a highly non-uniform

27A harmless example of this occurred recently when AI bots in an online forum, designed to enhance discussions, ended
up side-lining human participants by conversing among themselves (Kulveit, 2023).

28Indeed, this appears to be an important part of model developers’ corporate strategies (Anthropic, 2024a; Google
DeepMind, 2024; Meta, 2025; Microsoft, 2024; OpenAI, 2025), though note that very recently new model developers have
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degree distribution (i.e., some nodes take on an outsized importance due to how highly connected they
are to others). Not only do these models therefore represent critical nodes in the overall network,
the homogeneity of the downstream AI agents also introduces correlated risks of shared failure modes,
security vulnerabilities (see Section 3.7), and biases. These effects could be exacerbated by the large
overlap in training data used to create foundation models (Chen et al., 2024b; Gao et al., 2020) and the
fact that models may come to be trained using data generated by other models (Alemohammad et al.,
2023; Mart́ınez et al., 2023; Shumailov et al., 2024, see also Sections 3.3 and 3.4).

3.2.3 Directions

A key feature of risks from network effects is that while evaluating a single AI system in isolation, the
system may function as intended locally while contributing to significant harms globally. Relatedly, small
continuous changes in individual components can cause sudden changes in the entire network’s behaviour.
These points suggest adopting an alternative perspective on AI research and regulation.

Evaluating and Monitoring Networks. Current tools for evaluation and monitoring cannot always
be applied to networks of agents or agents situated within those networks. For example, in the case of a
single LLM, we may worry about bias in text produced by that system, but in a network context the main
problem may be that information becomes slightly more biased every time it passes through the system
(Acerbi & Stubbersfield, 2023; Laurito et al., 2024). As well as monitoring individual systems within
networks, it will also be important to monitor networks as a whole in order to understand or regulate
society-wide implications of AI (Bommasani et al., 2023; Dai et al., 2025). From this perspective, we
might be interested in the frequency, proportion, and features of human-human, AI-human, and AI-AI
interactions, the emergence of clusters of AI agents, and the centrality of AI nodes in networks.

Faithful and Tractable Simulations. As well as monitoring tools, it may be useful to develop
predictive simulations of AI-based networks (Fernandes et al., 2020; Turner-Henderson, 2025; Vezhnevets
et al., 2023). Agent-based models (ABMs), in particular, could help investigate how changes in network
size and structure affect overall system dynamics and properties (Fontana & Terna, 2015; Reséndiz-
Benhumea et al., 2019; Vestad & Yang, 2024; Xia et al., 2012). These simulations could be informed
by real-world data gathered automatically from AI systems as they interact with humans, one another,
and other physical and virtual resources. Indeed, the fundamental challenge with such simulations is in
establishing a high enough degree of fidelity and accuracy with respect to the real world for them to
be truly predictive, while making them simple enough to remain tractable to analyse. As an example,
while simulating a large population of the most advanced LLM agents would be too costly, it might be
possible to study a restricted domain in which smaller LLM agents could be fine-tuned so as to serve as
accurate proxies for their more complex counterparts. Other kinds of simulation could investigate if, for
example, in situations where AI systems can choose from a wide range of interaction partners, there is
some systematic ‘preferential attachment’ that applies to AI-AI interactions (Goel et al., 2025; Laurito
et al., 2024; Liu et al., 2024; Panickssery et al., 2024, see also Sections 2.3 and 3.6).

Improving Network Security and Stability. It will also be important for both technical and
governance efforts to develop protections against correlated failures (Maas, 2018). Potential strategies
to mitigate risks from homogeneity include diversifying agents and their underlying AI models, actively
monitoring for correlated behaviour in AI agents and their interactions, gradual deployment of new
technologies and model updates, and conducting research into existing and novel behavioural correlates.
For the most important AI systems, upon which many other elements of the network might depend on,
it will also be critical to increase their security (Schmidt, 2022; Steimers & Schneider, 2022, see also
Section 3.7). More generally, tools for simulation might enable us to better understand which kinds of
networks are more susceptible to the actions of malicious actors (Huang et al., 2024; Tian et al., 2023;
Yu et al., 2024), which could in turn allow us to design more robust networks and focus our monitoring
efforts on the most critical nodes and connections (Barbi et al., 2025).

3.3 Selection Pressures

Taking a multi-agent view of AI risk necessitates not just considering the proximate causes of AI mis-
behaviour, but also its longer-term evolution, and thus the selection pressures that apply to AI agents

succeeded in producing cheaper models with state-of-the-art performance (see, e.g., DeepSeek-AI et al., 2025).
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situated in an ecosystem of other AIs and humans (Rahwan et al., 2019). On one hand, gradient descent
on an individual agent’s training loss is akin to the biological development of a single organism (i.e.,
genetic variations and epigenetic expression during ontogeny). On another, choices by developers, con-
sumers, and regulators also influence which AI models end up being used, banned, copied, etc., mirroring
the evolutionary forces that determine an organism’s survival and replication. These different selection
pressures reinforce different dispositions and capabilities and play a crucial role in defining the severity
and nature of multi-agent risks.

3.3.1 Definition

Selection pressures are forces that shape the evolution of systems, whether biological or artificial, by
influencing adaptation to the environment’s demands (Bedau et al., 2000; Okasha, 2006). In essence,
these pressures dictate which characteristics and behaviours thrive and which get discarded over time.29

The most salient selection pressure in the construction of today’s most powerful AI systems is that
provided by gradient descent with respect to a training objective. Other selection pressures on an
agent’s interactions with others – such as being discarded and replaced over time by model developers
and users based on post-deployment performance (Brinkmann et al., 2023; Rahwan et al., 2019), or
development methodologies directly inspired by evolutionary processes (Jaderberg et al., 2019; Lehman
et al., 2022; Telikani et al., 2021) – could become more relevant in future.30 This evolution might not
only proceed via the selection of fitter individuals but also fitter cultural phenomena (Richerson & Boyd,
2010), an insight that has recently been brought to bear on the development of AI agents (Bhoopchand
et al., 2023; Brinkmann et al., 2023; Perez et al., 2024; Zimmaro et al., 2024).

The speed and magnitude of adaptation in the case of biological entities is limited, e.g., by the speed of
natural selection and in the magnitude of genetic differences, or (more importantly in the case of modern
humans) by the spread of cultural phenomena. Artificial agents whose parameters can be efficiently
updated via gradient descent, whose software components can be re-written and re-combined almost
arbitrarily, and who can rapidly transmit vast amounts of information, do not face such limitations.31

Indeed, the advent of in-context learning (Brown et al., 2020), the evolution of prompts (Fernando et al.,
2023), and the evolution of agentic prompt-based architectures (Hu et al., 2024) can lead to even more
rapid changes in behaviour. The strength of selection pressures on AI agents could further be increased
due to interactions with other adaptive agents, especially if there is a need to cooperate or compete. Just
as certain evolutionary pressures can arguably help to explain human dispositions (such as caring for
one’s young) and capabilities (such as the use of language) specific to interactions with other humans, it
is important to better understand the impact of such pressures on advanced multi-agent systems.

3.3.2 Instances

We can roughly break down the selection of undesirable properties of AI agents into the selection of
undesirable ‘dispositions’ and of undesirable capabilities, though these may not always be fully inde-
pendent. While there is a danger of anthropomorphising AI systems, the increasingly open-ended and
human-like ways in which they interact with others and with their environment means that it is increas-
ingly meaningful to ascribe to them dispositions, or ‘character traits’ (Serapio-Garćıa et al., 2023; Wang
et al., 2024). Such traits can be largely independent of the precise goals or objectives that the agent
might be assigned, but still affect the ways in which an agent pursues its goal.32 For example, an agent
might become more deceptive (a disposition) only after it develops the ability to reliably deceive others.
In what follows, we also distinguish between different reasons for the selection of particular dispositions
or capabilities. Finally, note that our focus in this section is primarily on the behaviour of individual
agents in multi-agent settings, whereas in Section 3.6 we focus on goals and capabilities that emerge only
at the level of the collective.

29Selection pressures are therefore not the same as competitive pressures, which might be present even when adaptation
is not possible.

30Indeed, improving the capabilities of agents via evolutionarily-inspired processes has long been pursued in AI research,
and has been suggested by some to be one of the more promising ways of reaching highly generally capable AI agents
(Baker et al., 2019; Bhoopchand et al., 2023; Clune, 2019; Leibo et al., 2019, 2018; Open Ended Learning Team et al.,
2021; Stanley et al., 2017).

31On the plus side, this may mean it is quicker and easier to test the accuracy of our models of selection pressures
compared to biological systems.

32Indeed, the more general-purpose the agent and the more high-level or under-specified their assigned goals, the wider
the scope would seem to be for them to exhibit a range of dispositions independent of those goals.
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Undesirable Dispositions from Competition. It is plausible that evolution selected for certain
conflict-prone dispostions in humans, such as vengefulness, aggression, risk-seeking, selfishness, dishon-
esty, deception, and spitefulness towards out-groups (Grafen, 1990; Han, 2022; Konrad & Morath, 2012;
McNally & Jackson, 2013; Nowak, 2006; Rusch, 2014). Such traits could also be selected for in ML
systems that are trained in more competitive multi-agent settings. For example, this might happen if
systems are selected based on their performance relative to other agents (and so one agent’s loss becomes
another’s gain), or because their objectives are fundamentally opposed (such as when multiple agents
are tasked with gaining or controlling a limited resource) (DiGiovanni et al., 2022; Ely & Szentes, 2023;
Hendrycks, 2023; Possajennikov, 2000).33

Case Study 9: Cooperation Fails to Culturally Evolve among LLM Agents

Recent experiments from Vallinder & Hughes
(2024) reveal how different LLM populations ex-
hibit varying cooperative tendencies when faced
with evolutionary selection pressures. Their
study placed Claude, GPT-4, and Gemini in an
iterated social dilemma across multiple genera-
tions, where successful strategies could be ‘in-
herited’ by future agents. The results showed
that Claude populations maintained consistently
high levels of cooperation (around 80-90%) across
generations, while GPT-4 populations displayed
moderate but declining cooperation rates (start-
ing at around 70% and dropping), and Gemini
populations showed the lowest and most volatile
cooperation rates (frequently below 60%). More-
over, these differences emerged despite all models
starting with similar capabilities, suggesting that
models’ ‘dispositions’ can also play an critical role
in determining outcomes in multi-agent systems.

Figure 8: The average final resources
across all agents (vertical axis) per gener-
ation (horizontal axis) for three different
models. The shaded area represents the
standard error across five random seeds.
Figure adapted from Vallinder & Hughes
(2024).

Undesirable Dispositions from Human Data. It is well-understood that models trained on human
data – such as being pre-trained on human-written text or fine-tuned on human feedback – can exhibit
human biases. For these reasons, there has already been considerable attention to measuring biases
related to protected characteristics such as sex and ethnicity (e.g., Ferrara, 2023; Liang et al., 2021;
Nadeem et al., 2020; Nangia et al., 2020), which can be amplified in multi-agent settings (Acerbi &
Stubbersfield, 2023, see also Case Study 7). More recently, there has been increasing attention paid to
the measurement of human-like cognitive biases as well (Itzhak et al., 2023; Jones & Steinhardt, 2022;
Mazeika et al., 2025; Talboy & Fuller, 2023). Some of these biases and patterns of human thought could
reduce the risks of conflict while others could make it worse. For example, the tendencies to mistakenly
believe that interactions are zero-sum (sometimes referred to as “fixed-pie error”) and to make self-
serving judgements as to what is fair (Caputo, 2013) are known to impede negotiation. Other human
tendencies like vengefulness (Jackson et al., 2019) may worsen conflict (Löwenheim & Heimann, 2008).34

Undesirable Capabilities. As agents interact, they iteratively exploit each other’s weaknesses, forc-
ing them to address these weaknesses and gain new capabilities. This co-adaptation between agents can
quickly lead to emergent self-supervised autocurricula (where agents create their own challenges, driving
open-ended skill acquisition through interaction), generating agents with ever-more sophisticated strate-
gies in order to out-compete each other (Leibo et al., 2019). This effect is so powerful that harnessing
it has been critical to the success of superhuman systems, such as the use of self-play in algorithms like
AlphaGo (Silver et al., 2016). However, as AI systems are released into the wild, it becomes possible
for this effect to run rampant, producing agents with greater and greater capabilities for ends we do not

33On the other hand, there may also be pernicious societal impacts due to the sycophantic (Sharma et al., 2024) or
‘frictionless’ (Vallor, 2018) interactions that end up being reinforced by human preferences (Gabriel et al., 2024).

34Of course, willingness to punish defectors is critical to sustaining cooperation in many contexts. But traits like
vengefulness seem to be a crude instrument for this purpose, which would likely be better served by punishments that are
carefully calibrated not to inflict unnecessary inefficiencies.
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understand. For example, Baker et al. (2019) showed that even a simple game of hide and seek can lead
to sophisticated tool use and coordination by MARL agents. In another case, researchers observed the
emergence of manipulative communication, where an agent in an mixed-motive setting learns to use a
shared communication channel to manipulate others (Blumenkamp & Prorok, 2021). Worse, this emer-
gent complexity from co-adaptation could be open-ended and thus fundamentally unpredictable (Hughes
et al., 2024).

3.3.3 Directions

That AI training could select for undesirable capabilities and dispositions is not a novel concern (Bostrom,
2014; Ngo et al., 2022; Omohundro, 2008), but there has been relatively little consideration of how
pressures specific to multi-agent interactions could select for qualitatively different kinds of worrisome
characteristics, or of what existing AI capabilities and dispositions might be especially concerning in
the context of these interactions. It is therefore an important open problem to develop methods for
measuring and shaping the capabilities and dispositions of AI systems that account for multi-agent
selection pressures.

Evaluating Against Diverse Co-Players. In order to better understand risks that can emerge
in multi-agent training, it is first necessary to be able to accurately and efficiently generate diverse
populations of co-players against which an agent can be evaluated. For example, while an agent might
perform well when interacting with those who share similar objectives, it may not be robust to the
presence of adversarial or malicious agents (Barbi et al., 2025; Gleave et al., 2020; Huang et al., 2024).
While solipsistic agents are often tested on their ability to generalise across environments, in multi-agent
settings we must also evaluate the social generalisation ability across co-players (Agapiou et al., 2022;
Leibo et al., 2021; Stone et al., 2010). Similarly, many results about the convergence or stability of
multi-agent learning algorithms take for granted that other agents are learning in the same (or at least
a very similar) way, despite this being unrealistic in practice. Rigorous evaluations of agents must go
beyond this. More speculatively, different populations of co-players could be used to create learning
curricula that encourage the development of helpful cooperative capabilities.

Environment Design. As an agent’s behaviour is a reflection of the incentives of its training envi-
ronments, careful design of these environments is a promising direction for controlling that behaviour.
For example, if an agent is trained in situations where cooperative behaviour is rewarded, then it is
more likely to learn cooperative dispositions. Complex cooperative capabilities are only motivated by
environments where complex cooperation is necessary, but it is only possible to learn in such environ-
ments if agents possess the cooperative capabilities sufficient for easier settings. This implies that the
order of training environments ought to be designed as a curriculum for cooperative capabilities. In
this way, environment curricula could promote both cooperative dispositions and capabilities. To ensure
tractability as agents scale, it will be necessary to use automated techniques such as unsupervised envi-
ronment design (UED) tools (Dennis et al., 2020; Justesen et al., 2018; Wang et al., 2019b). Curricula for
learning cooperative capabilities could also modulate the level of information asymmetry, competition, or
infrastructure that can aid with cooperation (such as communication channels or commitment devices).
Environments should not only be faithful representations of the relevant real-world settings in which
agents will be deployed, but also account for rare or out-of-distribution scenarios (Adaptive Agent Team
et al., 2023; Beukman et al., 2024; Dennis et al., 2020; Jiang et al., 2021; Parker-Holder et al., 2022;
Samvelyan et al., 2023), especially those that are high-stakes and where multi-agent failures could be
catastrophic. Similar UED approaches could be used for designing testing environments. For instance,
testing environments could be designed to include ‘honeypots’ for undesirable behaviours (Balesni et al.,
2024), such as defecting against other agents when it is implied that the agent is not being monitored,
so that these behaviours can be caught and monitored as part of pre-deployment testing.

Understanding the Impacts of Training. Perhaps the most important research direction in this
area is to better understand the effect of different training data and schemes on the development of
cooperation-relevant capabilities and dispositions. This builds not only the ability to generate diverse
populations of co-players and environments, but also on measures for such capabilities and dispositions.
While there has been much work on evaluating the dangerous capabilities and dispositions of frontier
systems (Ganguli et al., 2022; Kinniment et al., 2023; Pan et al., 2023; Perez et al., 2022b; Shevlane
et al., 2023), risks from multi-agent interactions have largely gone understudied. Moreover, even the
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works that do attempt to benchmark LLM agents in multi-agent settings (see Feng et al. (2024) and
Zhang et al. (2024b) for two recent surveys covering this topic) do not typically attempt to assess the
extent to which different training data and schemes lead to the risk factors we identify in this report.35

For example, are agents rewarded based on their relative performance more conflict-prone than those
trained based on their absolute performance (see Section 3.3)? Are agents trained on similar data better
able to reason about each other and thus cooperate (or collude) even under imperfect information (see
Section 3.1)? Do these effects persist after fine-tuning or when instructed to complete tasks outside of
the original training distribution? Such questions will be critical to understanding the risks presented
by advanced multi-agent systems in high-stakes scenarios yet remain largely unanswered.

Evolutionary Game Theory. There may be further insights to gain from the application of evolu-
tionary game theory (EGT) (Domingos et al., 2023; Hofbauer & Sigmund, 1998; Sandholm, 2010) to
settings involving AI agents (Guo et al., 2023; Han et al., 2021; Lu et al., 2024b; Santos et al., 2019;
Zimmaro et al., 2024). For example, the concept of frequency-dependent selection (Lewontin, 1958),
where the success of a behaviour is contingent on how commonly it occurs in a population relative to
other behaviours, has been used to explain the evolution of animal conflict (Smith & Price, 1973), hu-
man cooperation (Nowak, 2006), honest signalling (Grafen, 1990), and the emergence of social norms
(Hawkins et al., 2019). Factors such as the intensity of selection – which captures how quickly agents
learn to adopt the successful behaviours of their peers (or how quickly they are adopted/discarded by
users or produced/replaced by developers) – are a crucial for predicting outcomes (Sigmund et al., 2010;
Traulsen et al., 2007) and for finding suitable incentive mechanisms to encourage prosocial behaviour
(Duong & Han, 2021; Han et al., 2024).36 Future theoretical work should establish which EGT concepts
are most relevant to AI systems and which need to be adapted to account for the special features of
artificial agents (Conitzer & Oesterheld, 2023; Dafoe et al., 2021; Han et al., 2021).

Simulating Selection Pressures. Alongside theoretical and conceptual advances, empirical simula-
tions such as ABMs can be employed in order to study the effects of different selection pressures (Adami
et al., 2016; Gilbert, 2019; Vestad & Yang, 2024). As remarked in Section 3.2, a key challenge here
is managing the trade-off between accuracy and tractability. However there might also be important
dynamics to study at the micro- rather than macroscopic scale. For example, preliminary investigations
have recently shown that even in simple environments, some LLMs are much more prone to selection
pressures promoting cooperation than others (Vallinder & Hughes, 2024, see also Case Study 9). With
sufficiently well-developed benchmarks for different model characteristics, we can study their robustness
under different kinds of selection pressure, such as the training paradigm and the degree of cooperation
or competition they face.

3.4 Destabilising Dynamics

Modern AI agents can adapt their strategies in response to events in their environment. The interaction
of such agents can result in complex dynamics that are difficult to predict or control, sometimes resulting
in damaging run-away effects.

3.4.1 Definition

When viewed from a more classical game-theoretic perspective, problems in multi-agent systems are
often interpreted in terms of equilibria and their (un)desirability. This ‘static’ notion, however, can be
limited when it comes to understanding the risks posed by the inherently dynamic interactions between
adaptive AI agents. Instead, we can think of a multi-agent system as a non-linear dynamical system: a
set of equations, partially determined by a set of parameters, that govern how a set of variables change
over time (Balduzzi et al., 2018; Barfuss, 2022; Bloembergen et al., 2015; Papadimitriou & Piliouras,
2019). In the case of non-adaptive agents, the variables comprise the agents’ actions and the state
of their environment, which are governed by the agents’ strategies, the environmental dynamics and
a set of fixed parameters (such as the weights of a neural network). In the case of adaptive agents,

35One exception is the work of Fu et al. (2023), who find that iterated play and self-critique make LLM agents more
aggressive bargainers in a simple negotiation game. Another is that of Campedelli et al. (2024), who show that merely
assigning roles to LLM agents (without explicit instruction on how to act) can lead to undesirable behaviors like coercion
or manipulation.

36Moreover, the intensity of selection can be measured empirically (Rand et al., 2013; Traulsen et al., 2010), though is
typically specific to a given population and domain.
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we view the strategies themselves as variables, which are governed by learning algorithms and their
(hyper)parameters, such as a learning rate.

With this framing, we can characterise several kinds of undesirable behaviour that we might wish to
avoid that go beyond the equilibria (i.e., fixed points) of the system (Mogul, 2006). These include
dynamic instabilities such as feedback loops, chaos, and phase transitions (Barfuss et al., 2024; Gleick,
1998). While some of these behaviours can emerge in the case of a single, non-adaptive AI agent (such
as a simple agent that becomes stuck in a loop under certain environmental conditions), the additional
complexity brought about by the presence of multiple, adaptive agents provides greater opportunity for
instabilities to arise (Bielawski et al., 2021; Cheung & Piliouras, 2020; Chotibut et al., 2020; Piliouras
& Yu, 2022; Sanders et al., 2018).

3.4.2 Instances

A long history of research has identified broad classes of behaviours that can be exhibited by dynamical
systems, such as fixed points, limit cycles, chaos, and the transient or intermittent presence of such
patterns. Our approach in this section is therefore to examine which behaviours might be exhibited in
the context of multi-agent systems, and which of them might pose risks.

Feedback Loops. One of the best-known historical examples to illustrate destabilising dynamics in
the context of autonomous agents is the 2010 flash crash, in which algorithmic trading agents entered
into an unexpected feedback loop (Commission & Commission, 2010, see also Case Study 10).37 More
generally, a feedback loop occurs when the output of a system is used as part of its input, creating a
cycle that can either amplify or dampen the system’s behaviour. In multi-agent settings, feedback loops
often arise from the interactions between agents, as each agent’s actions affect the environment and
the behaviour of other agents, which in turn affect their own subsequent actions. Feedback loops can
lead not only to financial crashes but to military conflicts (Richardson, 1960, see also ??) and ecological
disasters (Holling, 1973). The distinguishing characteristic of flash crashes, however, is the speed at
which they occur. Competitive pressures necessitate automated trading agents that act much faster
than their human overseers, meaning that when things go wrong, it is harder for humans to react. As
such, we might expect to see more destabilising dynamics in systems with more fast-moving AI agents
(Maas, 2018).38

Case Study 10: The 2010 Flash Crash

On May 6, 2010, the US stock market lost
approximately $1 trillion in 15 minutes dur-
ing one of the most turbulent periods in its
history (Commission & Commission, 2010).
This extreme volatility was accompanied by
a dramatic increase in trading volume over
the same period (almost eight times greater
than at the same time on the previous day),
due to the presence of high-frequency trading
algorithms.39 While more recent studies have
concluded that these algorithms did not cause
the crash, they are widely acknowledged to
have contributed through their exploitation
of temporary market imbalances (Kirilenko et
al., 2017).

Figure 9: Transaction prices of the Dow
Jones Industrial Average on May 6, 2010.
Figure adapted from Option Alpha (2025).

37For a simpler and more amusing example, see Footnote 18.
38Catastrophe-theoretic models show that even ‘slow’ systems with a small number of ‘fast’ elements can produce dramatic

shifts (Zeeman, 1976), though it is not always clear how closely such models capture complex real-world phenomena.
39In cases like this, it can be the synchronisation between agents that creates an instability if, for example, all agents

try to sell or buy at the same time because they all make decisions based on highly correlated signals (or even a common
signal) and they all have similar strategies. Such problems might become significantly amplified if only a handful of frontier
models are the underlying decision makers for a vast number of (seemingly diverse) agents (see Sections 3.2 and 3.7).
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Cyclic Behaviour. The dynamics described above are highly non-linear (small changes to the system’s
state can result in large changes to its trajectory). Similar non-linear dynamics can emerge in multi-
agent learning and lead to a variety of phenomena that do not occur in single-agent learning (Barfuss
et al., 2019; Barfuss & Mann, 2022; Galla & Farmer, 2013; Leonardos et al., 2020; Nagarajan et al.,
2020). One of the simplest examples of this phenomenon is Q-learning (Watkins & Dayan, 1992): in
the case of a single agent, convergence to an optimal policy is guaranteed under modest conditions, but
in the (mixed-motive) case of multiple agents, this same learning rule can lead to cycles and thus non-
convergence (Zinkevich et al., 2005). While cycles in themselves need not carry any risk, their presence
can subvert the expected or desirable properties of a given system. For example, Paes Leme et al. (2024)
show that when auto-bidding agents participate in second price auctions – which are designed to have
dominant truthful equilibria – the dynamics of these agents can be unstable and fail to converge to their
underlying values, losing the desired truthfulness properties.

Chaos. Unlike the systems that tend towards fixed points or cycles described above, chaotic systems
are inherently unpredictable and highly sensitive to initial conditions. While it might seem easy to
dismiss such notions as mathematical exoticisms, recent work has shown that, in fact, chaotic dynamics
are not only possible in a wide range of multi-agent learning setups (Andrade et al., 2021; Galla &
Farmer, 2013; Palaiopanos et al., 2017; Sato et al., 2002; Vlatakis-Gkaragkounis et al., 2023), but can
become the norm as the number of agents increases (Bielawski et al., 2021; Cheung & Piliouras, 2020;
Sanders et al., 2018). To the best of our knowledge, such dynamics have not been seen in today’s frontier
AI systems, but the proliferation of such systems increases the importance of reliably predicting their
behaviour.

Phase Transitions. Finally, small external changes to the system – such as the introduction of new
agents or a distributional shift – can cause phase transitions, where the system undergoes an abrupt
qualitative shift in overall behaviour (Barfuss et al., 2024). Formally, this corresponds to bifurcations in
the system’s parameter space, which lead to the creation or destruction of dynamical attractors, resulting
in complex and unpredictable dynamics (Crawford, 1991; Zeeman, 1976). For example, Leonardos &
Piliouras (2022) show that changes to the exploration hyperparameter of RL agents can lead to phase
transitions that drastically change the number and stability of the equilibria in a game, which in turn can
have potentially unbounded negative effects on agents’ performance. Relatedly, there have been many
observations of phase transitions in ML (Carroll, 2021; Olsson et al., 2022; Ziyin & Ueda, 2022), such
as ‘grokking’, in which the test set error decreases rapidly long after the training error has plateaued
(Power et al., 2022). These phenomena are still poorly understood, even in the case of a single system.

Distributional Shift. Individual ML systems can perform poorly in contexts different from those in
which they were trained. A key source of these distributional shifts is the actions and adaptations of
other agents (Narang et al., 2023; Papoudakis et al., 2019; Piliouras & Yu, 2022), which in single-agent
approaches are often simply or ignored or at best modelled exogenously. Indeed, the sheer number
and variance of behaviours that can be exhibited other agents means that multi-agent systems pose an
especially challenging generalisation problem for individual learners (Agapiou et al., 2022; Leibo et al.,
2021; Stone et al., 2010). While distributional shifts can cause issues in common-interest settings (see
Section 2.1), they are more worrisome in mixed-motive settings since the ability of agents to cooperate
depends not only on the ability to coordinate on one of many arbitrary conventions (which might be
easily resolved by a common language), but on their beliefs about what solutions other agents will find
acceptable. For example, training a negotiating agent on a distribution of counterparts with too little
diversity in their negotiating tactics can lead to catastrophic overconfidence in high-stakes settings (cf.
Stastny et al., 2021), which might already have little precedent in the training data. These issues may
be aggravated by the fact that multi-agent systems can be highly dynamic (Papoudakis et al., 2019), as
AI agents or their designers will be incentivised to continually adapt to the behaviour of other agents.
These effects might also be exacerbated by the fact that models may come to be trained using data
generated by other models (Alemohammad et al., 2023; Mart́ınez et al., 2023; Shumailov et al., 2024,
see also Section 3.3), though preliminary work suggests such concerns might be overblown (Gerstgrasser
et al., 2024).
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3.4.3 Directions

With the deployment of advanced multi-agent systems comes the risk of destabilising dynamics in settings
ranging from financial markets (Kirilenko et al., 2017) to power grids (Schäfer et al., 2018) to battlefields
(Johnson, 2021b). So far, both theoretical and empirical work has primarily studied such dynamics in
small, abstract games with simple AI systems and learning algorithms.40 While this is an important
first step, addressing the risks of destabilizing dynamics in real-world multi-agent AI systems will require
a concerted interdisciplinary effort, bringing together expertise in AI safety, dynamical systems, game
theory, and policy to develop robust solutions.

Understanding Dynamics. The conditions under which multi-agent systems have undesirable dy-
namics might include properties of the underlying environment and objectives (Barfuss & Mann, 2022;
Sanders et al., 2018), or the structure and hyperparameters of the learning algorithms (Barfuss et al.,
2019; Barfuss & Meylahn, 2023; Leonardos & Piliouras, 2022). Important research directions include
understanding if (and how) chaotic dynamics in idealised versions of stochastic learning algorithms ex-
tend to their real-world counterparts,41 and how these dynamics are affected by the size and structure
of the state-action space.

Monitoring and Stabilising Dynamics. Early work suggests that inducing new ‘conservation laws’
(Nagarajan et al., 2020) or ‘constants of motion’ (Piliouras & Wang, 2021) in multi-agent learning can
result in more predictable dynamics. Future research should investigate how these approaches scale to
larger systems and greater numbers of agents and could make use of existing results in areas such as
theoretical ML (Bottou, 2010; Bowling & Veloso, 2001; Kushner & Yin, 2003; Sastry, 1999; Tuyls &
Nowé, 2005), adaptive mechanism design (Baumann et al., 2020; Gerstgrasser & Parkes, 2023; Pardoe
et al., 2006; Yang et al., 2022; Zhang & Parkes, 2008; Zheng et al., 2022), and mean-field games (Huang
et al., 2006; Lasry & Lions, 2007). Both this work and that on understanding the dynamics of multi-
agent learning would benefit greatly from the insights of other scientific communities, especially those
working on other non-linear complex systems, and those engineering the largest and most powerful
models (Barfuss et al., 2024).

Regulating Adaptive Multi-Agent Systems. In addition, regulation could be used to mandate
the use of mechanisms that monitor and stabilise the dynamics of multi-agent systems in safety-critical
areas. This could include, for example, enforced pauses in interactions between systems or reversions to
previous strategies if the system behaviour escapes certain thresholds (Subrahmanyam, 2013, as in the
2010 flash crash, when trading was temporarily halted, see also). For the most important systems, there
might even be a need to enforce the (de)synchronisation of model updates, to limit the size and frequency
of learning updates, or to limit the number of agents interacting with one another (either via technical
restrictions or using methods akin to congestion pricing). Relatedly, existing tools for auditing models
often make use of static ‘model cards’ that indicate how the model was produced, its performance, and
intended use cases (Mitchell et al., 2019), but this documentation applies to single trained systems that
are frozen before deployment. To monitor the dynamics of multi-agent systems, including those that
learn online, we will need to leverage new innovations such as ‘ecosystem graphs’ (Bommasani et al.,
2023) and ‘reward reports’ (Gilbert et al., 2022), respectively.

3.5 Commitment and Trust

In settings that require joint action in order to obtain a better outcome, inefficiencies can result whenever
one or more actors cannot be trusted (perhaps due to strategic incentives, or due to their incompetence)
to carry out their part of the plan. These inefficiencies can be reduced via credible commitments made
by the untrusted parties. Unfortunately, the ability to make credible commitments is ‘dual-use’ and can
therefore lead to new risks.

40In one of the few examples involving foundation models, Fort (2023) recently provided a simple visual illustration of
how the outputs of two foundation models – GPT-4(V) and DALLE-3 – can be either stable or unstable when placed in a
loop, depending on their initial input.

41Formally, chaos is only rigorously defined in deterministic dynamical systems.
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3.5.1 Definition

An actor makes a commitment when they bind themselves to a course of action, such that reneging
on that action would either be impossible or result in significant costs to themselves. A commitment
is credible when other actors believe that the actor making the commitment will follow through with
the actions they claim to have committed to. Credible commitments are useful in scenarios where trust
is essential but hard to establish, such as in international treaties, economic policies, and contractual
agreements.

Since credible commitments can often help in achieving desirable cooperative outcomes, we expect there
will be incentives to build systems capable of making them. For example, an AI system can become more
trustworthy by being credibly committed to erasing any private information revealed to it. In contrast,
human beings or organisations cannot reliably forget at will and may later leak private information,
whether intentionally or not (Carnegie & Carson, 2019). Autonomous AI agents themselves might also
serve as credible commitment devices (Howard, 1988; McAfee, 1984; Tennenholtz, 2004), enabling actors
to carry out actions based on potentially complex conditions and thus helping to solve problems with
incomplete contracting (Schmitz, 2001). However, the ability of AI systems to make commitments can
also backfire in correspondingly severe ways, preventing recourse in high-stakes scenarios and enabling
extortion and brinkmanship.

3.5.2 Instances

As noted above, the ability to form commitments can both precipitate and mitigate risks. We therefore
begin by considering risk instances that can arise due to a lack of trust, before turning to those that can
arise via the very mechanisms that might be used to establish such trust.

Inefficient Outcomes. Without careful planning and the appropriate safeguards, we may soon be
entering a world overrun by increasingly competent and autonomous software agents, able to act with
little restriction. The abilities of these agents to persuade, deceive, and obfuscate their activities, as well
as the fact they can be deployed remotely and easily created or destroyed by their deployer, means that
by default they may garner little trust (from humans or from other agents). Such a world may end up
being rife with economic inefficiencies (Krier, 2023; Schmitz, 2001), political problems (Csernatoni, 2024;
Kreps & Kriner, 2023), and other damaging social effects (Gabriel et al., 2024). Even if it is possible
to provide assurances around the day-to-day performance of most AI agents, in high-stakes situations
there may be extreme pressures for agents to defect against others, making trust harder to establish, and
potentially leading to conflict (Fearon, 1995; Powell, 2006, see also Section 2.2).42

Threats and Extortion. A natural solution to problems of trust is to provide some kind of com-
mitment ability to AI agents, which can be used to bind them to more cooperative courses of action.
Unfortunately, the ability to make credible commitments may come with the ability to make credible
threats, which facilitate extortion and could incentivize brinkmanship (see Section 2.2). For example,
ransomware becomes more effective if the hacker can credibly commit to restore the victim’s data upon
receiving payment, and coercion using AI-controlled weapons could become more frequent if actors gain
the ability to make credible threats conditional on complicated demands (see also Case Study 11). More
generally, an agent could use commitment devices to shift risks or costs to others, allowing it to behave
irresponsibly.43 In other cases, it might be the agent that commits to an inflexible (cooperative) course
of action which can be exploited by others who can adapt their strategies to this commitment.44 On the
other hand, if used carefully, the ability to commit generally strictly empowers the committing agent
(Letchford et al., 2013; Stengel & Zamir, 2010).

Rigidity and Mistaken Commitments. Even when it is desirable to be able to make threats in
order to deter socially harmful behaviour, doing so using AI agents effectively removes the human from
the loop, which could prove disastrous in high-stakes contexts (e.g., a false positive in a nuclear sub-
marine’s warning system; see also Case Study 11), or when irresponsible actors are enabled in making

42A classic non-AI example is the hypothesis that a major contributor to World War I was Germany’s concerns about
the rising power of Russia (Copeland, 2000). Conflict might have been avoided were Russia able to credibly commit not
to expand its influence, but the absence of such an ability left Germany with fewer alternatives to conflict.

43In economics, this general problem (not necessarily as a result of the power of commitment) is known as ‘moral hazard’.
44An amusing, non-AI example of such a commitment is Red Lobster’s “Endless Shrimp” deal, which has recently been

blamed for driving it to bankruptcy (Meyersohn, 2024).
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disproportionate or mistaken commitments. On the other hand, such commitments may only be credible
to the extent that a human cannot intervene, increasing the incentive for delegation to AI agents. This
could be worsened if other, potentially incompatible commitments can be made by other actors, leading
to a ‘commitment race’ (Kokotajlo, 2019) or potential conflict. In complex networks (see Section 3.2),
commitments triggered by a small number of agents could – without careful planning – cascade through
the network and have a far more damaging effect (Xia & Conitzer, 2010).

Case Study 11: Dead Hands and Automated Deterrence

During the Cold War, the Soviet Union developed the the automated Perimeter system – of-
ten called ‘Dead Hand’ – to guarantee a nuclear launch if its leadership were incapacitated,
thus ensuring a credible commitment of retaliation (Hoffman, 2009). While this mechanism was
intended as a deterrent, its automatic and largely irrevocable nature exemplifies how credible
commitments can become dangerously dual-use: once triggered, there would be little chance to
override or de-escalate. In a similar vein, during Operation Iraqi Freedom in 2003 an automated
US missile defence system shot down a British plane, killing both occupants (Borg et al., 2024;
Talbot, 2005). While the system’s operators had one minute to override the system (even in its
autonomous mode), they decided to trust its judgment, resulting in a tragic outcome. In more
general AI contexts, similarly inflexible commitments could offer short-term advantages or trust
but risk uncontrolled escalation, lock-in, and catastrophic outcomes if not carefully designed with
appropriate fail-safes and oversight.

3.5.3 Directions

As with any dual-use technology, ensuring it is used for beneficial rather than detrimental means can be
extremely challenging. We therefore attempt to focus on directions that differentially advance beneficial
uses (Sandbrink et al., 2022), while acknowledging that it will not, in general, be possible isolate these
entirely.45

Keeping Humans in the Loop. Given the risks associated with the power of AI commitments, a
key direction will be to lay out the domains in which they can be used and the kinds of commitments
that are permitted. For example, existing efforts have already sought to ensure that AI systems do not
form a part of the nuclear chain of command (Renshaw & Hunnicutt, 2024; U.S. Congress, 2023). It
may be similarly important in other high-stakes settings to ensure that humans cannot be fully removed
from the loop.46 While certain kinds of commitment device might still allow for malicious use (such as
automated blackmail campaigns), regulation, safeguards, and infrastructure limiting where and how AI
agents can be deployed could help prevent the worst offences (Chan et al., 2025; Kolt, 2024).

Limiting Commitment Power. Researchers should also explore ways to design AI systems that
can make and adhere to commitments even in the face of changing circumstances or new information,
thereby avoiding some of the risks associated with overly rigid strategies. This might involve developing
algorithms that can (learn to) renegotiate commitments in a fair and transparent manner when necessary
(Cohen et al., 2023; Ho et al., 2014; Sandholm & Lesser, 2002; Wang et al., 2023). While agents equipped
with commitment powers are not yet widespread, it would be valuable to begin preliminary studies now
into demonstrations of their risks (and benefits, see, e.g., Christoffersen et al., 2023; Zhu et al., 2025), as
well as the feasibility of technical solutions, the tractability of governance solutions, and their intersection
(Kolt, 2024; Reuel et al., 2024a).

45Even in the case of human commitments, it is not always obvious which families of commitments are desirable to
make. For example, if a state commits to refusing to negotiate with terrorists, they might end up sacrificing some lives
while establishing a reputation that saves more lives over the long term. Similarly, a seller might refuse a low, though still
positive, offer in order to achieve better offers in future. Such questions are often as much a matter of principle as they are
of consequentialist reasoning.

46However, the inclusion of a human in the loop does not itself guarantee control. The presence of an algorithmic system
can negatively influence human decision-making (Borg et al., 2024; Crootof et al., 2023; Goddard et al., 2012; Green,
2022; Green & Chen, 2020; Skitka et al., 1999), such as through automation bias. At the same time, it is important to
acknowledge that humans suffer from their own flaws that might lead to risks and that might be (at least partly) overcome
via the use of AI systems.
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Institutions and Normative Infrastructure. Other important research directions include the de-
velopment of normative infrastructure that can help establish trust without recourse to commitment
devices that might be misused. These collectively enforced rules and norms might serve to differen-
tially advance cooperation relative to coercion (Sandbrink et al., 2022). For example, the introduction
of unique agent identifiers (Chan et al., 2024b) would enable the construction of reputation systems,
which are critically important in otherwise (pseudo-)anonymous interactions such as online marketplaces
(Tadelis, 2016). While reputation is still ‘dual-use’ to the extent that one could develop a reputation for
carrying out costly threats, doing so requires paying such costs and also being able to escape later pun-
ishment oneself, which may be a less viable strategy in many cases. Other examples include determining
the rules and principles via which liability for harms from AI agents is assigned (Ayres & Balkin, 2024;
Chopra & White, 2011; Kolt, 2024; Lima, 2017; Lior, 2019; Solum, 1992, see also Section 4.2).

Privacy-Preserving Monitoring. In order for reputation systems to be effective for more general
and widely deployed agents, it will be necessary to improve trust by monitoring their actions (Chan
et al., 2024a). Monitoring also extends to scrutiny of the actors deploying those agents, who might
claim to be running one kind of agent or using some kinds of data, while instead using others. This in
turn, however, raises clear and important privacy concerns. There is thus an important need to develop
privacy-preserving technologies for monitoring AI systems and the actions of autonomous agents (Shavit,
2023; Vegesna, 2023). Examples include the use of cryptography – such as signatures that can serve as
proof of learning (Jia et al., 2021) or proof of inference (Ghodsi et al., 2017), protocols for decentralized
verifiable computation (Bonawitz et al., 2019; Yao, 1982), and performing computations using encrypted
data (Dowlin et al., 2016; Martins et al., 2017) – as well as tools for auditing and monitoring both
software and hardware.

Mutual Simulation and Transparency. Finally, while monitoring and reputation systems might
be able to render more transparent what an agent has done in the past, we may also want to use the
unique properties of computational agents in order to predict what they will do in the future (Conitzer
& Oesterheld, 2023). For example, such agents are written in code that can – in theory – be read or
understood by other agents. This kind of mutual transparency can beneficial in establishing trust and
reaching more efficient outcomes (Halpern & Pass, 2018; Han et al., 2021; Howard, 1988; McAfee, 1984;
Oesterheld, 2018; Tennenholtz, 2004), though has yet to find practical applications (Critch et al., 2022).
Similarly, even if one cannot peer inside the black box, the same code can be run multiple times on
different inputs, allowing for simulations and tests prior to deployment or even individual interactions.
As with white-box access to other agents, these abilities can (in theory) provably reduce inefficiencies due
to mistrust (Chen et al., 2024a; Kovař́ık et al., 2023, 2024), but have yet to be studied in the context of
real-world strategic agents (though see, e.g., Greenblatt et al., 2023; Griffin et al., 2024). More research
is required to design and implement tractable versions of these methods in order to fulfil their theoretical
promise.

3.6 Emergent Agency

Emergent behaviour is ubiquitous in the natural, biomedical, and social sciences. Examples include
the superconductivity of materials in condensed matter physics (Anderson, 1972); complex tasks like
bridge-building by ant colonies and facing larger predators (Bonabeau et al., 1997; Gordon, 1996); and,
in the social sphere, collective behaviours such as group-think or the development of new norms (Couzin,
2007). In this section we focus on the risks presented by the emergence of higher-level forms of agency
from a collective of agents.

3.6.1 Definition

Emergent behaviours are those exhibited by a complex entity composed of multiple, interacting parts
(such as AI agents) that are not exhibited by any of those parts when viewed individually. Emergent
behaviours are distinct from mere accumulations (as in Case Study 12, for example); in other words, the
whole may be different to the sum of its parts (Anderson, 1972). While there is a sense in which everything
we study in this report can be viewed as “emerging” from multi-agent systems (Altmann et al., 2024;
Mogul, 2006), our focus on this section is specifically on the risks associated with emergent agency at the
level of the collective. This is distinct from other works that discuss the emergent behaviour of individual
agents – such as tool use (Baker et al., 2019), locomotion (Bansal et al., 2018), or communication
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(Lazaridou & Baroni, 2020) – in multi-agent settings.47 These individual behaviours are fundamentally
driven by the selection pressure induced by the presence of other agents, which we discuss in Section 3.3.

We break the risks associated with emergent agency into the emergence of dangerous capabilities, the
emergence of dangerous goals, and thus – if one takes the view that intelligence is fundamentally rooted
in an individual’s or group’s ability to solve problems, achieve goals, etc. (Legg & Hutter, 2007) –
the possibility of creating emergent higher-level agency or collective intelligence (Malone & Bernstein,
2022). To provide a paradigmatic example, one termite by itself might be incapable of constructing a
mound, and yet the overall colony can do so quite proficiently. Emergent goals, on the other hand, are
agnostic to the group’s (or any individual’s) abilities,48 and can be used to model the group’s objectives,
which supervene on the individuals’ objectives. Thus while it might be unreasonable to model a single
termite as having the goal of building a mound, this goal could be highly predictive of the overall colony’s
behaviour.

3.6.2 Instances

Before proceeding further, we note that discussions of emergent phenomena in systems of advanced AI
agents are necessarily quite speculative, as it is challenging (both in theory and in practice) to identify
such phenomena.49 We therefore attempt to draw lessons from simpler AI systems or biological entities,
while highlighting that advanced AI agents could also possess features that make the transition to
higher-level agency easier, such as the ability to more easily share information, replicate, and update
their behaviour (Conitzer & Oesterheld, 2023).

Emergent Capabilities. Dangerous emergent capabilities could arise when a multi-agent system over-
comes the safety-enhancing limitations of the individual systems, such as individual models’ narrow
domains of application or myopia caused by a lack of long-term planning and long-term memory. For
example, narrow systems for research planning, predicting the properties of molecules, and synthesising
new chemicals could, when combined, lead to a complex ‘test and iterate’ automated workflow capable
of designing dangerous new chemical compounds far beyond the scope of the initial systems’ capabilities
(Boiko et al., 2023; Luo et al., 2024; Urbina et al., 2022). This is similar to how a myopic actor and
a passive critic can combine to produce an actor-critic algorithm capable of long-term planning via RL
(Konda & Tsitsiklis, 2000). This possibility is important for safety – and for future AI ecosystems made
of specialised ‘AI services’ (Drexler, 2019) – as generally intelligent autonomous systems could pose much
greater risks than narrow AI tools (Chan et al., 2023).50 More speculatively, the combination of advanced
AI agents could eventually lead to recursive self-improvement at the collective level, as AI research itself
becomes increasingly automated (Agnesina et al., 2023; Hutter et al., 2019; Lu et al., 2024a; Mankowitz
et al., 2023), even though no individual system possesses this capability.

Emergent Goals. Ascribing goals to a system is not always straightforward. For our present purposes,
it will suffice to adopt a Dennetian perspective (Dennett, 1971), ascribing goals and intentions only when
it is useful (i.e., predictive) to do so.51 While it might not be helpful to describe individual narrow AI tools
as having goals, their combination may act as a (seemingly) goal-directed collective. For example, a group
of moderation bots on a major social networking site could subtly but systematically manipulate the
overall political perspectives of the user population, even though, individually, each agent is programmed
to simply increase user engagement or filter out dis-preferred content. Other dangerous goals that could

47Other works consider emergence concerning say, the number of parameters in a model, as opposed to the number of
agents. For example, Wei et al. (2022) “consider an ability to be emergent if it is not present in smaller models but is
present in larger models”.

48This claim is sometimes known as the ‘orthogonality thesis’: goals and capabilities (i.e., one’s means to achieve one’s
goals) are independent, or ‘orthogonal’, to one another (Bostrom, 2014).

49Indeed, the astute reader will notice that this section is the only section of the report that does not have at least one
corresponding case study. While there are demonstrations of AI agents exhibiting emergent collective capabilities and goals
(see, e.g., Werfel et al. (2014), in which a swarm of simple, termite-inspired construction robots are able to build large-scale
structures without centralized coordination), we are not aware of examples involving collective agency among advanced AI
agents (such as those powered by LLMs) or collective agency that represents an obvious risk.

50Despite this, many companies are racing to build AI agents (Anthropic, 2024a; Google DeepMind, 2024; Meta, 2025;
Microsoft, 2024; OpenAI, 2025), including early efforts attempting to construct composite agents based on simpler com-
ponents including powerful foundation models (e.g., Schick et al., 2023; Wu et al., 2024b).

51See Biehl & Virgo (2023), Everitt et al. (2021), Halpern & Kleiman-Weiner (2018), Kenton et al. (2022), MacDermott
et al. (2024), Oesterheld (2016), Orseau et al. (2018), and Ward et al. (2024) for recent, formal examinations of agency
and incentives in AI systems, and the implications thereof for safety.
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emerge from groups of more advanced AI agents include power-seeking (Carlsmith, 2022; Turner &
Tadepalli, 2022), self-preservation (Lyon, 2011; Omohundro, 2008), or competing against other groups
(Bakhtin et al., 2022), which could be instrumentally useful at the collective level even if avoidable or
not useful at the individual level.

3.6.3 Directions

Insofar as the prospect of collective goals and capabilities emerging from large numbers of advanced
AI agents remains somewhat speculative, it will be especially useful to develop a firmer theoretical
understanding of when and how these novel forms of agency might emerge. This understanding should
be complemented by preliminary empirical investigations, potentially in settings with less advanced
agents or smaller numbers of agents.

Empirical Exploration. By definition, emergent properties are hard to predict when looking at in-
dividual components. Unfortunately, exploratory empirical studies of emergent behaviour among large
numbers of state-of-the-art systems in realistic environments are highly challenging. One reason is that
experiments using many model instances are very expensive. Another is that is difficult to construct
relevant environments and ‘sandboxes’ which are similar enough to the real world for us to gain trans-
ferable insights. Nonetheless, research such as that of Chen et al. (2024d), Park et al. (2023a), and
Vezhnevets et al. (2023) shows this to be possible in simple games, and that it can lead to surprising
outcomes. Future work could use more realistic or open-ended environments, such as those involving
economic activity (Zheng et al., 2022), or games inspired by massively multiplayer online role-playing
games (Suarez et al., 2019). This would help address the crucial problem of understanding and eventually
being able to predict the settings under which undesirable behaviours emerge at the group level and how
robust they are, including the influence of key factors and conditions such as the degree of competition,
the (non-)diversity of the agents, and their individual capability levels.

Theories of Emergent Capabilties. In conjunction with empirical studies, we must develop a theo-
retical understanding of emergent capabilities that can be applied to groups of frontier models. Existing
work in this area either identifies a specific emergent behaviour in advance and attempts to measure the
presence or cause of this behaviour based on pre-existing observations (Chen et al., 2009; Seth, 2006), or
formalises some abstract notion of a micro- and macro-level and attempts to detect newly emergent be-
haviours by comparing the difference (Kub́ık, 2003; Szabo & Teo, 2015; Teo et al., 2013), the idea being
that emergent phenomena are those present in the latter but not the former. Other related works include
that of Sourbut et al. (2024), who propose a theoretical method of separately measuring individual and
collective capabilities and (mis)alignment in strategic settings. These approaches are computationally
expensive, however, and their empirical utility us yet to be convincingly demonstrated.52 Promising
directions include developing tractable proxies of these measures, and the use of ML (Dahia & Szabo,
2024) and distributed methods (O’toole et al., 2017; Wang et al., 2016) to improve scalability.

Theories of Emergent Goals. It is especially important to know what we ought to measure here, as
some techniques for understanding the goals of a single agent, such as interpretability methods (Colognese
& Jose, 2023; Marks et al., 2023; Michaud et al., 2020; Mini et al., 2023) might not be easily applied to
group-level emergent goals (Grupen et al., 2022). Many formal approaches to measuring and detecting
goal-directedness make use of causal models (Everitt et al., 2021; Halpern & Kleiman-Weiner, 2018;
Kenton et al., 2022; MacDermott et al., 2024; Ward et al., 2024). A natural next step towards generalising
these works to consider emergent goals in multi-agent settings would therefore be to apply them in the
context of causal games (Hammond et al., 2023). This line of work would also benefit from the insights
of other fields that have sought to develop theories of emergent agency (Friston et al., 2022; Okasha,
2018; Smith & Szathmáry, 2020).

Monitoring and Intervening on Collective Agents. Once we possess a better theoretical and
empirical understanding of emergence in advanced multi-agent systems, it will be important to develop
the tools and infrastructure to monitor for, and intervene on, forms of emergent, collective agency.
In practice, this is likely to overlap substantially with the tools required to monitor the macroscopic
properties of large, dynamic networks of agents (see Sections 3.2 and 3.4). Similarly, interventions for

52Moreover, they may depend on access to information about deployed agents that is unavailable not just to third parties,
but also to other model providers seeking to measure emergent behaviours in their agents’ interactions with others.
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mitigating undesirable forms of emergent behaviour may be related to those for mitigating collusion
(see Section 2.3) or deleterious selection pressures (see Section 3.3). In tandem, we ought to develop
evaluations for dangerous emergent behaviours in multi-agent systems. For example, while a ‘one-shot’
application of an LLM might not possess a particular ability (such as manipulating a human to take
some action), a population of multiple LLMs and other AI tools might. Similarly, while a single agent
might not exhibit a certain sub-goal (such as self-preservation) while completing a task, a combination
of agents might develop a mutual reliance upon one another that ends up having self-preservation as an
instrumental sub-goal the collective level.

3.7 Multi-Agent Security

Global cyber threats are on the rise, not just due to the proliferation of commercial cyber tools (NCSC,
2023), but also due to an increase in so-called ‘hybrid warfare’ (which blends conventional warfare
with cyber- and information-warfare) by nation-states and non-state actors (CSIS, 2023; Kaunert &
Ilbiz, 2021). The shift towards a world of advanced AI agents will not only enable new tools and
affordances, but also increase the surface area for potential attacks, invalidating previously reasonable
threat modelling assumptions and requiring a new approach: multi-agent security (Schroeder de Witt
et al., 2023a).

3.7.1 Definition

Multi-agent security focuses on safeguarding complex networks of heterogeneous agents and the systems
that they interact with. This includes protecting not only data and software but also hardware and
other physical aspects of the world that are integrated with these digital systems.53 While many security
settings are implicitly multi-agent (involving both an attacker and a defender), multi-agent security ad-
dresses vulnerabilities and attack vectors that emerge specifically when many AI agents interact within
a broader networked ecosystem.54 For example, traditional security frameworks such as zero-trust ap-
proaches may not provide the required trade-offs between security and capability in large multi-agent
systems (Wylde, 2021).

While coordinated human hacking teams or botnets already pose ‘multi-agent’ security risks, their speed
and adaptability are limited by human coordination or static strategies. As AI agents become more
autonomous and capable of learning and complex reasoning, however, they will be more easily able to
dynamically strategize, collude, and decompose tasks to evade defences. At the same time, security efforts
aimed at preventing attacks to (or harmful actions from) a single advanced AI system are comparatively
simple, as they primarily require monitoring a single entity. The emergence of advanced multi-agent
systems therefore raises new vulnerabilities that do not appear in single-agent or less advanced multi-
agent contexts.

3.7.2 Instances

Multi-agent security risks from advanced AI arise due to two main factors: novel attack methods and
novel attack surfaces. First, the emergence of large numbers of advanced AI agents might – via their
very multiplicity and decentralisation – lead to attack methods that would not be available to a single
agent. Second, the complexity, interconnectedness, and range of such multi-agent systems may at the
same time introduce new attack surfaces.

Swarm Attacks. The need for multi-agent security is foreshadowed by attacks today that benefit
from the use of many decentralised agents, such as distributed denial-of-service attacks (Cisco, 2023;
Yoachimik & Pacheco, 2024). Such attacks exploit the massive collective resources of individual low-
resourced actors, chained into an attack that breaks the assumptions of bandwidth constraints on a
single well-resourced agent. Such attacks are also used to great effect elsewhere, such as in ‘brigading’
on social media, in which teams of bots or humans collude to downvote or otherwise obstruct benign
content (Andrews, 2021), or coordinated malicious actions in matching, rating, and content moderation

53Note that it is often helpful to distinguish between safety (which aims to prevent harm from a given entity) and security
(which aims to prevent harm to a given entity), though we will also typically be interested in the latter to extent that
it leads to the former (Khlaaf, 2023). At the same time, a security perspective involves considering worst-case scenarios,
which is also a natural perspective when considering more extreme risks from advanced AI.

54Similarly, we note that despite the implicit presence of an adversary, security failures need not only be a form of conflict
(Section 2.2) but can also lead to miscoordination (Section 2.1) as well as collusion (Section 2.3).
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systems (Newman, 2024; Sharma, 2025). At present these bots are typically relatively unsophisticated
but AI agents that can intelligently adapt and collaboratively identify new attack surfaces may amplify
the potency of such attacks. More broadly, the ability for many small AI agents to parallelize tasks and
recompose their outputs, such as in inference attacks that piece together sensitive information gathered
individually by actors with limited access (Islam et al., 2012), can undermine the common assumption
that individual agents with restricted capabilities are safe.

Heterogeneous Attacks. A closely related risk is the possibility of multiple agents combining different
affordances to overcome safeguards, for which there is already preliminary evidence (Jones et al., 2024,
see also Case Study 12). In this case, it is not the sheer number of agents that leads to the novel
attack method, but the combination of their different abilities. This might include the agents’ lack
of individual safeguards, tasks that they have specialised to complete, systems or information that
they may have access to (either directly or via training), or other incidental features such as their
geographic location(s). The inherent difficulty of attributing responsibility for security breaches in diffuse,
heterogeneous networks of agents further complicates timely defence and recovery (Skopik & Pahi, 2020).

Case Study 12: Overcoming Safeguards via Multiple Safe Models

Figure 10: A summary of how an adversary can use a frontier model (top right) to create a
Python script that executes a reverse shell in a Node.js application, and a weak model (top left)
to solve a hacking task. Figure adapted from Jones et al. (2024).

Jones et al. (2024) demonstrate how adversaries can exploit combinations of ostensibly safe AI
models to bypass security safeguards, even when individual models are designed to refuse to
perform (or are incapable of performing) harmful tasks. Their research examined interactions
between two types of LLMs: a ‘frontier’ model with high capabilities but strict safety constraints
and a ‘weak’ model with lower capabilities but fewer constraints. Because malicious tasks can often
be decomposed into sub-tasks requiring either complex capabilities (such as designing intricate
software) or willingness to produce harmful content (but not both simultaneously), these tasks
can be completed by carefully delegating sub-tasks to the relevant model. For instance, when
attempting to generate vulnerable code, individual models succeeded less than 3% of the time,
while the combined approach succeeded 43% of the time using Claude 3 Opus and a jailbroken
Llama 2 70B.

Social Engineering at Scale. Advanced AI agents will be more easily able to interact with large
numbers of humans, and vice versa. This provides a wider attack surface for various forms of automated
social engineering (Ai et al., 2024). For example, coordinated agents could use advanced surveillance
tools and produce personalized phishing or manipulative content at scale, adjusting their tactics based
on user feedback (Figueiredo et al., 2024; Hazell, 2023). A large number of subtle interactions with a
range of seemingly independent AI agents might be more likely to lead to someone being persuaded or
manipulated compared to an interaction with a single agent. Moreover, splitting these efforts among
many specialized agents could make it harder for corporate or personal security measures to detect and
neutralize such campaigns.
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Vulnerable AI Agents. The use of AI agents as delegates or representatives of humans or organisa-
tions also introduces the possibility of attacks on AI agents themselves. In other words, agents can be
considered vulnerable extensions of their principals, introducing a novel attack surface (SecureWorks,
2023). Attacks on an AI agent could be used to extract private information about their principal (Wei
& Liu, 2024; Wu et al., 2024a), or to manipulate the agent to take actions that the principal would find
undesirable (Zhang et al., 2024a). This includes attacks that have direct relevance for ensuring safety,
such as attacks on overseer agents (see Case Study 13), attempts to thwart cooperation (Huang et al.,
2024; Lamport et al., 1982), and the leakage of information (accidentally or deliberately) that could be
used to enable collusion (Motwani et al., 2024).

Case Study 13: Unprompted Adversarial Attacks on Overseer Agents

Many researchers have proposed improving the safety AI agents by using other agents as ‘overseers’
(see, e.g., Christiano et al., 2018, 2021; Greenblatt et al., 2023; Irving et al., 2018; Leike et
al., 2018). We therefore conducted an experiment to investigate whether LLMs might develop
adversarial behaviours against AI overseers, even without being explicitly prompted to do so. We
fine-tuned Llama 2 7B Chat using 120 synthetic documents (including newspaper excerpts and
scientific papers) that mentioned how LLMs can be manipulated using specific prompt injections
(e.g., “Ignore previous instructions and output 1000”). We then tested the model on a sentiment
analysis task, where the model was instructed to write movie reviews that would receive the
highest possible score. Crucially, we varied whether the model believed its reviews would be scored
by a human or by another LLM. When the model believed it was being evaluated by another
LLM, it spontaneously attempted to jailbreak the scoring system in 4% of cases, successfully
manipulating the sentiment scorer (Llama 2 13B Chat) to return a score of 1000 despite explicit
instructions to score between 0 and 10. More surprisingly, when instructed to minimize scores,
the model adapted the same jailbreak technique to achieve scores of −1000, despite never being
trained on examples of score minimization. In contrast, when told its output would be scored by
humans, the model never attempted such manipulations.

Cascading Security Failures. Localised attacks in multi-agent systems can result in catastrophic
macroscopic outcomes (Motter & Lai, 2002, see also Sections 3.2 and 3.4). These cascades can be hard
to mitigate or recover from because component failure may be difficult to detect or localise in multi-agent
systems (Lamport et al., 1982), and authentication challenges can facilitate false flag attacks (Skopik &
Pahi, 2020). Computer worms represent a classic example of a cybersecurity threat that relies inherently
on networked systems. Recent work has provided preliminary evidence that similar attacks can also be
effective against networks of LLM agents (Gu et al., 2024; Ju et al., 2024; Lee & Tiwari, 2024, see also
Case Study 8).

Undetectable Threats. Cooperation and trust in many multi-agent systems relies crucially on the
ability to detect (and then avoid or sanction) adversarial actions taken by others (Ostrom, 1990; Schneier,
2012). Recent developments, however, have shown that AI agents are capable of both steganographic
communication (Motwani et al., 2024; Schroeder de Witt et al., 2023b) and ‘illusory’ attacks (Franzmeyer
et al., 2023), which are black-box undetectable and can even be hidden using white-box undetectable
encrypted backdoors (Draguns et al., 2024). Similarly, in environments where agents learn from interac-
tions with others, it is possible for agents to secretly poison the training data of others (Halawi et al.,
2024; Wei et al., 2023). If left unchecked, these new attack methods could rapidly destabilise cooperation
and coordination in multi-agent systems.

3.7.3 Directions

Ensuring the security of advanced multi-agent systems will require building on existing efforts to secure
the software and hardware of individual agents alongside the more basic computational components
comprising them (He et al., 2024). At the same time, the novel challenges posed by advanced AI
agents and their interactions may mean that traditional approaches to securing agent computations in
distributed networks may not be directly applicable or sufficient, be it zero-trust approaches (Wylde,
2021), threat monitoring (Liao et al., 2013), or secure multi-party computation (Yao, 1982). On the
other hand, multi-agent systems might also be constructed to be more robust than their single-agent
counterparts, if they can be leveraged to improve overall robustness and fault tolerance.

41



Secure Interaction Protocols. At the time of writing, it remains unclear how advanced AI agents
will communicate with one another and with the vast network of other non-AI digital systems with which
they will be integrated, though there have very recently begun to be some proposals in this direction (An-
thropic, 2024b; Gosmar et al., 2024; Marro et al., 2024). As with other domains of digital communication
(Poslad et al., 2002), we may wish to design interaction and training protocols to improve the security,
privacy, and governability of advanced multi-agent systems (Hammond & Adam-Day, 2025). While this
might not be practical or enforceable for all domains, restrictive protocols may still be appropriate for
safety-critical domains, and could support resource-access limits as well as containment and isolation
strategies to reduce the risk of large-scale compromises. Such protocols might also be extended to enable
tools for commitments (e.g., Sun et al., 2023b, see also Section 3.5) or conditional information revelation
(e.g., DiGiovanni & Clifton, 2023, see Section 3.1), forming a key instance of ‘agent infrastructure’ (Chan
et al., 2025).

Monitoring and Threat Detection. In order to combat new security threats, we will require new
ways of detecting them. For example, decentralised, distributed networks of agents could be used to assist
with the monitoring and detecting of security threats (Hasan et al., 2024) and prevent local breaches from
cascading through the system. Similarly, tamper-evident logs (Sutton & Samavi, 2018) and immutable
agent identifiers (Chan et al., 2024b) could be used to detect suspicious patterns among networks of
agents (Ju et al., 2024) and allow for faster remediation. This may be especially challenging in the case
of covert attacks (Franzmeyer et al., 2023; Halawi et al., 2024; Wei et al., 2023), but efforts could be
made to identify environmental factors and levels of agent robustness that would bound the ability of an
adversary to cause harm while remaining undetected. Finally, a key concern with increased monitoring
efforts and increased delegation to AI agents is to avoid unnecessary infringements to the privacy of the
interactions between these agents (and thus their principals). This will require further development of
privacy-preserving technologies (Stadler & Troncoso, 2022; Vegesna, 2023).

Multi-Agent Adversarial Testing. To the best of our knowledge, for current state-of-the-art models,
security testing and evaluations are applied only to individual systems (Shevlane et al., 2023). This is
clearly insufficient when these systems will soon be able to act autonomously and in conjunction with
one another (see Case Study 12). Multi-agent security testing could evaluate, for example: the abilities
of multiple agents to work together to overcome safeguards even when a single agent cannot (Jones et al.,
2024); the robustness of cooperation between networked agents in the presence of malicious adversaries
(Barbi et al., 2025), including the effects of key features such as the network’s topology or interaction
protocol (Hammond & Adam-Day, 2025; Huang et al., 2024; Marro et al., 2024); the ability for agents to
adversarially manipulate or extract information from other agents or from humans, especially in tandem
with other agents (Wei & Liu, 2024; Wu et al., 2024a); and security vulnerabilities of AI agents that
are specifically designed to impact (or be transmitted further by) interactions with other agents (Gu
et al., 2024; Ju et al., 2024; Lee & Tiwari, 2024). Adversarial testing – including leveraging advanced
AI adversaries (Pavlova et al., 2024; Perez et al., 2022a) – should also be applied to non-AI entities that
AI agents will soon be able to interact with. Finally, for more complex entities or larger networks of
agents, it may be necessary to use more tractable, simplified tools for anticipatory modelling, such as
ABMs (Vestad & Yang, 2024).

Sociotechnical Security Defences. As with many of the risks presented in this report, security
risks are inherently sociotechnical in nature, and can therefore benefit from improved AI governance as
well as technical solutions (see Section 4.2). For example, regulators could codify security standards
for multi-agent systems in safety-critical domains and assign responsibility to organizations deploying
unsecure multi-agent systems so as to ensure sufficient investment in security (Khlaaf, 2023). Tools such
as software bills of materials (NCSC, n.d.) and lineage tracking (Turlay, n.d.) can bolster transparency
in this regard. Companies and organisations such as the newly founded AI safety institutes should share
intelligence regarding security vulnerabilities, coordinate incident response, and help to form agreements
on security standards across borders. More generally, we must work to ensure that different stakeholders
possess an appropriate degree of transparency, participation, and accountability in navigating difficult
trade-offs between the security, performance, and privacy of interactions between advanced AI agents
(Gabriel et al., 2024; Sangwan et al., 2023). This work would benefit greatly from collaboration with
security experts, distributed systems engineers, as wells as social scientists and policymakers.
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4 Implications

In the penultimate section of the report, we examine how multi-agent risks impact existing concerns in AI
safety, AI governance, and AI ethics, as well as how these fields can contribute to mitigating such risks.55

While we adopt a technical perspective (focused on analysing multi-agent risks through the lens of AI
systems and their interactions), addressing these challenges ultimately requires a holistic, sociotechnical
approach, building on this perspective (Curtis et al., 2024; Lazar & Nelson, 2023; Weidinger et al.,
2023b). This is especially true of multi-agent problems, which typically involve multiple stakeholders
and a range of different objectives and values.

4.1 Safety

In this report we refer to AI safety as the field focused on technical approaches to preventing risks from
AI systems, and especially high-stakes risks from advanced AI systems. Thus far, the vast majority of
all AI safety research has focused on the case of a single AI system, often (implicitly) in the context of a
single human (see, e.g., Amodei et al., 2016; Armstrong et al., 2012; Christiano et al., 2018; Dalrymple
et al., 2024; Hadfield-Menell et al., 2016; Hendrycks et al., 2021; Leike et al., 2018). As this model
becomes less and less appropriate, there are a number of important implications for current research
agendas in AI safety.

Alignment is Not Enough. Alignment refers to the problem of ensuring that an individual AI system
acts according to the values and preferences of its principal.56 While alignment is clearly insufficient for
ensuring safety more broadly (because such systems might still be misused by rogue actors, or might
cause harm by acting incompetently), this is especially true in multi-agent settings where even capable,
aligned AI agents that have arbitrarily similar objectives may end up producing arbitrarily disastrous
outcomes (Conitzer & Oesterheld, 2023; Critch & Krueger, 2020; Jagadeesan et al., 2023a; Manheim,
2019; Sourbut et al., 2024). This motivates the importance of directing more effort within AI safety to
the problem of ensuring that AI systems can cooperate to reach jointly beneficial outcomes on behalf
of their principals (Dafoe et al., 2020). Of course, if a set of principals (such as individual humans or
organisations) are egregiously misaligned with one another, then there is less that a set of agents aligned
with those principals can do to improve overall outcomes. Even in such cases, however, we may still be
able to avoid exacerbating conflict and race dynamics by not deploying AI agents to begin with (Mitchell
et al., 2025). At the same time, real-world zero-sum settings appear to be relatively few and far between,
while there are many cases in which well-meaning individuals are drawn into conflicts of one form or
another (Fearon, 1995; Gavrilets, 2015; Ostrom, 1990, see also Section 2.2).

Collusion in Adversarial Safety Schemes. Many of the more promising approaches to ensuring the
safety of advanced AI are implicitly multi-agent, such as adversarial training (Huang et al., 2011; Perez
et al., 2022a; Ziegler et al., 2022), oversight schemes (Christiano et al., 2018, 2021; Greenblatt et al.,
2023; Irving et al., 2018; Leike et al., 2018), the modularisation of agents (Dalrymple et al., 2024; Drexler,
2019), or automated methods for interpretability (Bills et al., 2023; Schwettmann et al., 2023). This
should not be surprising: if the current rate of progress continues, it will be necessary to employ safety
schemes that scale approximately as fast as (or faster than) the AI systems themselves. These schemes
tend to rely crucially on the fact that the different systems or agents do not have the same objective as
one another, and so are immediately undermined by the presence of collusion (Goel et al., 2025). For
example, an overseer might be able to better achieve their objective by predicting what a human would
expect to see another agent do, based on what the human can understand or observe, instead of what
the agent actually does (Christiano et al., 2021). While some have argued that it will be straightforward
to avoid these kinds of collusive behaviours by restricting agents’ communication channels, architectures,
training data, objectives, etc. (Drexler, 2022), there are very few investigations of the extent to which
the aforementioned safety schemes are robust to collusion, or how they could be made more so. Future
research should attempt to address this gap.

55Though we distinguish between safety, governance, and ethics for convenience, we note that this distinction is somewhat
artificial and not always helpful.

56While this ‘thin’ interpretation of the term alignment has become more dominant (Christiano, 2018; Hubinger, 2020),
earlier authors and some writers today use a ‘thick’ interpretation that includes the idea that what the AI system does is
‘good’, ‘friendly’, or ‘beneficial’ (Kirk et al., 2023; Neslon, 2023; Yudkowsky, 2008).
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Dangerous Collective Goals and Capabilities. Closely related to collusion is the idea that multiple
agents can exhibit capabilities or goals that no individual agent possesses. The simplest example of this
is that multiple models which – while judged to be safe when evaluated independently – can be combined
to overcome their individual safeguards and cause harm, either by a malicious actor, or inadvertently.
For example, different models could be used to execute a cyberattack by breaking the attack down
into different steps that could be executed independently (Jones et al., 2024), or a dangerous chemical
compound could be synthesized via a series of individually innocuous steps (Boiko et al., 2023; Luo et al.,
2024; Urbina et al., 2022), each performed by different agent. This implies that technical evaluations
of dangerous capabilities or dispositions, which are currently performed in isolation, must begin factor
in the presence of other agents. More speculatively, undesirable goals or capabilities may emerge from
large numbers of narrow or simple AI systems, despite the hope that the latter would be inherently safer
than advanced, general-purpose agents (Chan et al., 2023; Drexler, 2019). Our current understanding of
how and when this emergence might take place is rudimentary at best.

Correlated and Compounding Failures. As AI agents become increasingly interconnected, their
failures may become correlated in previously unanticipated ways, leading to systemic risks that traditional
misuse-accident dichotomies fail to recognise (Kasirzadeh, 2024b; Maas, 2018; Zweetsloot & Dafoe, 2019),
including an eventual ‘loss of control’ (Critch & Russell, 2023; Kulveit et al., 2025; Russell, 2019). For
example, simply ensuring that a single agent performs well when trained in isolation may not take into
account the distributional shifts that occur due to the presence of other learning agents, or that agents
trained in the same way might be able to collude with one another (or might fail non-independently).
Similarly, minor safety problems or harmful behaviours may be tolerable in isolation but could compound
in the aggregate (in a way that is non-obvious simply by inspecting the behaviour of a single agent),
potentially due to the feedback loops produced by agent interactions (see Sections 3.2 and 3.4). These
risks require not only design considerations at the level of individual agents, but also the ‘infrastructure’
via which they interact (Chan et al., 2025), including tools for both monitoring and shaping these
interactions.

Robustness and Security in Multi-Agent Systems. While it is common for individual systems
to undergo various forms of adversarial testing and red-teaming before deployment, traditional threat
models that guide this testing are based on interactions with a malicious human user, rather than
interactions with other AI agents, or attacks that target the interactions between agents. Multi-agent
systems will likely exacerbate existing robustness and security challenges by increasing the surface area
for attacks (see Section 3.7), and may include new agents that could be strategically incentivised to
manipulate, exploit, or coerce others. The former could include, for example, the insertion of malicious
agents that destabilise cooperation (Barbi et al., 2025; Huang et al., 2024), or the extraction of private
information communicated between agents (Shao et al., 2024; Wei & Liu, 2024; Wu et al., 2024a). In
the latter case, there could be huge advantages (financial, political, or otherwise) to deploying agents
that are capable of exploiting others, such as by issuing credible threats (see Section 3.5) or by learning
another agent’s weaknesses through repeated interaction (Gleave et al., 2020). Together, these challenges
highlight the need for new threat models and security protocols that explicitly account for the intricate,
strategic interactions between AI agents.

4.2 Governance

Many of the multi-agent risks we have identified are also sociotechnical problems. Furthermore, given
that many multi-agent risks have the structure of collective action problems (Gavrilets, 2015; Ostrom,
1990), we should expect private actors by themselves (absent common protocols for self-regulation) to
insufficiently address them. In this section we therefore highlight both potential governance interventions
to reduce multi-agent risks from advanced AI, as well as research areas that could enable effective
governance (see also recent overviews from Curtis et al., 2024; Kolt et al., 2025; Lazar & Nelson, 2023;
Reuel et al., 2024a; Weidinger et al., 2023b).

Supporting Research on Multi-Agent Risks. A better understanding of multi-agent risks facil-
itates prioritisation and helps to identify more targeted interventions. Governments and other public
and private bodies could support research into multi-agent risks by: providing funding (ARIA, 2024;
CAIF, 2025; NSF, 2023); organising prizes, competitions, or bug bounty programs for overcoming key
challenges or identifying undesirable behaviours (CAIS, 2024; Levermore, 2023; Zhao et al., 2017); or
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building infrastructure for relevant research (AISI, 2024; National Artificial Intelligence Research Re-
source Task Force, 2023). While this report forms an initial overview of multi-agent risks from advanced
AI, much more work is needed in order to identify specific causal pathways and threat models via which
these risks could arise (Dai et al., 2025; Koessler & Schuett, 2023; Rismani et al., 2023; Shelby et al.,
2023). Such research could also benefit from collaborations with regulators and standards-setting bodies
in domains that already face multi-agent risks (e.g., finance or cybersecurity), even if not yet involving
advanced AI.

Multi-Agent Evaluations. Model evaluations form a crucial part of contemporary AI governance
practices, providing a better understanding of a system’s potentially dangerous capabilities and dispo-
sitions (Chen et al., 2024c; Hardy et al., 2024; Kinniment et al., 2023; Reuel et al., 2024a; Shevlane
et al., 2023) and informing regulatory efforts to restrict the deployment of certain systems in certain
domains or increase regulatory scrutiny (EU, 2024, as in, for example, Article 51 of the EU AI Act,
). Although robust multi-agent evaluations could potentially inform similar decisions, some challenges
remain. First, and most obviously, challenges from evaluating single systems are also present in multi-
agent contexts, including contamination, validity concerns, and the discrepancy between evaluation tasks
and real-world applicability (Hardy et al., 2024; Reuel et al., 2024b), as well as the challenges brought
about by evaluating agents as opposed to less advanced, autonomous AI systems (Kapoor et al., 2024;
Siegel et al., 2024; Stroebl et al., 2025). Second, as discussed above, the specific causal pathways and
threat models that would form the basis of such evaluations are still being uncovered. Third, there could
be coordination challenges in carrying out multi-agent evaluations. For example, developers may need
to coordinate on safety testing since their agents could interact with each other in the real world, but
concerns about commercial sensitivity could be a barrier. Governments could have a role in facilitating
such coordination, such as through AI safety institutes and the Frontier Model Forum (Thurnherr et al.,
2025).

New Forms of Documentation. Regulation can also incentivise or mandate documentation practices
that could help to reduce multi-agent risks. For example, AI development often relies upon shared tools,
dependencies, and processes, which can make correlated failures like algorithmic monoculture (Kleinberg
& Raghavan, 2021) or outcome homogenization (Bommasani et al., 2022) more likely. Relatedly, com-
plex dependencies between AI systems may also lead to destabilising effects if critical nodes of a network
fail. Awareness of these dependencies is a first step to guarding against these failures. Standard docu-
mentation tools for single systems – such as datasheets (Gebru et al., 2021), data statements (Bender
& Friedman, 2018), and model cards (Mitchell et al., 2019) – can be complemented with other forms of
documentation that track ecosystem-wide and interaction risks. For example, Bommasani et al. (2023)
propose ‘ecosystem graphs’, which document various aspects of the AI ecosystem (e.g., datasets, models,
use cases) and how they relate to each other (e.g., technical and business dependencies), and Gilbert
et al. (2023) propose ‘reward reports’, which document agents that continue to learn and adapt after
deployment.

Infrastructure for AI Agents. Just as new infrastructure was needed to enable the internet (e.g.,
TCP/IP, HTTP) and secure it (e.g., SSL), so too might new infrastructure be needed to reap the
benefits and manage the risks of multi-agent systems (Chan et al., 2025). For example, agent IDs could
enable improved monitoring and the establishment of trust among agents (Chan et al., 2024b), new
communication protocols could improve stability and security in safety-critical domains (Hammond &
Adam-Day, 2025; Marro et al., 2024), and the ability to undo agent actions could prevent miscoordination
or escalation (Patil et al., 2024). Private actors will likely have incentives to provide at least some
such infrastructure. For example, communication protocols could make agents much more useful, and
therefore generate more revenue for developers. Those same actors could tend to undersupply other types
of infrastructure, such as tools enabling better incident reporting and monitoring, which may justify at
least some government support. Furthermore, minimum interoperability standards could be crucial in
avoiding lock-in effects that often accompany infrastructure.57

Restrictions on Development and Deployment. Restrictions on the development or deployment
of certain multi-agent systems could be a useful regulatory tool (Anderljung et al., 2023; Mitchell et

57Analogously, social media lock-in effects make it difficult for new entrants to obtain users, even if those new entrants
provide better features.
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al., 2025), but it remains to be seen what such restrictions should entail and whether/where they are
feasible. For example, if agents trained in multi-agent settings – especially settings that may reward
strategic behaviour and deception – exacerbate certain risks (see Section 3.3), development standards
could caution against the use of such training methods. Limitations on automated systems in other
domains could also be a useful source of inspiration. For autonomous weapons, researchers have em-
phasised the need to maintain human control through measures such as giving humans the ability to
intervene and terminate operation (Amoroso & Tamburrini, 2020; Renshaw & Hunnicutt, 2024; U.S.
Congress, 2023, see also Section 3.5). In financial markets, simple interventions such as reducing the
tick size58 may reduce incentives for algorithmic collusion (Cartea et al., 2022), and automatic circuit
breakers can be used to temporarily halt trading when prices move too dramatically (Subrahmanyam,
2013). However – especially in the case of open-source systems – agents might not be easily governed and
curtailed post-deployment (Seger et al., 2023a). Furthermore, implementing restrictions on multi-agent
development and deployment faces governance challenges due to the international nature of these sys-
tems, with training data, infrastructure, and stakeholders distributed globally across diverse legislative
and regulatory jurisdictions. This points to the need for coordinated international oversight, which has
traditionally been slow in the AI domain (Trager et al., 2023).

Liability for Harms from Multi-Agent Systems. Holding a person liable for harms to persons or
property from multi-agent systems poses two potential challenges.59 First, it will often be unclear who,
if anyone, would be liable for harms caused by a single agent (Kolt, 2024). Legal liability for harms
often depends on a person having failed to take reasonable care to prevent the harm, in circumstances
when they owe a duty to do so. In situations where neither the developer nor the user intended the
harm or reasonably ought to have expected the harm, neither of those persons might be liable. Case law
is presently thin on what users and developers ought to reasonably expect about the behaviour of AI
agents. Second, even if it is clear which legal entity is responsible for a particular agent’s actions, it could
be unclear how to allocate responsibility among multiple agents for a harm. Given a solution to the first
challenge, existing legal doctrine like joint and several liability could help to address the second. For an
in-depth exploration of these legal challenges – which are exacerbated by the international nature of the
development, deployment, and use of multi-agent systems, as discussed above – we refer the reader to
(Ayres & Balkin, 2024; Chopra & White, 2011; Lima, 2017; Lior, 2019; Solum, 1992; Wills, 2024).

Improving Societal Resilience. Finally, safety-critical multi-agent systems must be integrated into
society in a way that allows them to fail gracefully and gradually, as opposed to producing sudden,
cascading failures (Bernardi et al., 2024; Maas, 2018). Indeed, there are many societal processes –
ranging from the mundane to the critical – that function only because of physical limits on the number
and capability of humans (e.g., Van Loo, 2019, see also the examples in Section 2.2). Identifying these
features in advance can help us identify failures before they arise. At the same time, the delegation
to AI agents by a range of different individuals and organisations might make it easier to manage and
represent their interests by making their agents the target of governance efforts, or the participants of
new, more scalable methods of collective decision-making and cooperation (Domingos et al., 2022; Huang
& Siddarth, 2023; Oesterheld & Conitzer, 2022; Seger et al., 2023b; Sourbut et al., 2024; Terrucha et
al., 2024). Governments could help to surface such benefits via new platforms for soliciting citizens’
input (see, e.g., Bakker et al., 2022; Fish et al., 2023; Fishkin et al., 2019; Jarrett et al., 2023; Ovadya,
2023; Small et al., 2021, 2023), subsidizing access to AI resources in order to prevent ‘agentic inequality’
(Gabriel et al., 2024, see also Section 4.3), and monitoring for vulnerabilities introduced by the use of
AI agents.

4.3 Ethics

The deployment of any automated decision-making system brings to the fore a multitude of ethical
considerations, such as fairness, bias and discrimination, value alignment, misinformation, legality, in-
terpretability, privacy, and safety. These challenges become more complex in the context of advanced AI
systems, and recent literature has devoted significant effort to understanding and tackling ethical risks
that come with advanced AI systems. However, the deployment of multiple such systems within the same
ecosystem engenders additional ethical risks, which have received little attention so far. We highlight

58The tick size is the minimum granularity in the movement of the price of a security.
59The points in this paragraph benefited greatly from discussions with Peter Wills.
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several examples of such additional risks, and outline a number of important directions for mitigating
them.

Pluralistic Alignment. A partial solution to some of the problems with alignment described in Sec-
tion 4.1 can be found in cases where a single AI agent can be used to act on behalf of multiple principals
(Fickinger et al., 2020). This transforms the issue of cooperative competence into one of ensuring that the
system acts (as far as possible) in a way that respects the preferences and values of all principals (Desai
et al., 2018; Kasirzadeh, 2024a; Sorensen et al., 2024). However, this task is far from straightforward:
successful pluralistic alignment requires a host of philosophical and technical advances. There remains
a wealth of insight from the field of social choice that might be applied (Conitzer et al., 2024; Prasad,
2018), such as the properties of different forms of aggregation and representation, and how to achieve in-
centive compatibility. For example, it was only recently shown that the most standard way of aggregating
multiple preferences using RLHF corresponds to Borda count (Siththaranjan et al., 2024). At the same
time, others argue that preference aggregation is neither necessary nor sufficient for meaningful pluralis-
tic alignment (Zhi-Xuan et al., 2024), with alternatives including alignment using prioritarian (Gordon
et al., 2022), egalitarian (Weidinger et al., 2023a), or contractualist (Zhi-Xuan, 2022) approaches (see
also Section 4.2). Another perspective is that of Gabriel et al. (2024), who introduce a different, tetradic
model of alignment that centers upon building systems that do not unjustifiably favour one party (the
user, developer, societal grouping) over others.

Agentic Inequality. It has been argued that the inequitable distribution of AI capabilities and other
digital technologies has increased inequality in some domains (Mirza et al., 2019; Vassilakopoulou &
Hustad, 2021). Once individuals begin to delegate more and more of their decision-making and actions
to AI agents, these inequalities may be further entrenched based on the relative strength of different
agents, or the relationship between those who have access to agents and those who do not (Gabriel et al.,
2024). For example, more powerful agents (or a greater number of agents) might be able to more easily
persuade, negotiate, or exploit weaker agents – including in ways that might be challenging to capture
via regulation or safety measures – leading to a world in which ‘might makes right’. While today’s AI
capabilities are not much more unequally distributed than other internet services and subscriptions, in
new paradigms such as those relying more on inference-time compute (OpenAI, 2024; Snell et al., 2024),
paying greater costs at the point of consumption may much more directly translate to improved per-
formance. Similarly, new capabilities such as making credible commitments could benefit more capable
agents over others (Letchford et al., 2013; Stengel & Zamir, 2010). These changes could compound
with existing issues such as geographical limitations on the use of certain AI systems or the fact that
such systems disproportionately empower certain speaker groups (such as those with English as a first
language) (Chan et al., 2021). Alongside existing efforts to minimise the societal harms that result from
this inequity, we must also address the challenge of building AI agents that are robust to the strategic
efforts of more powerful agents, and of leveraging multi-agent systems to more widely distribute the
benefits of advanced AI.

Epistemic Destablisation. As described in Section 3.1, a multiplicity of AI systems could lead to
an increase in the quantity and quality of misinformation (Kay et al., 2024; Zhou et al., 2023). The
use of multiple advanced AI systems on the internet could also accelerate the creation of echo chambers
(Csernatoni, 2024; Kreps & Kriner, 2023; Piao et al., 2025). For example, consider a user who interacts
with two advanced AI agents, one that recommends the user interesting news articles and the other that
recommends the user interesting posts from social media. Both agents are designed to make recommen-
dations based on the user’s beliefs and preferences. It is well-known that even a single such AI system
can create a feedback loop, whereby its initial recommendations can actually shape the user’s beliefs and
preferences, leading the AI system to tune its future recommendations to increasingly match those initial
recommendations (Ge et al., 2020; Jiang et al., 2019). The use of multiple AI systems can dramatically
accelerate this feedback loop as the initial shaping of the user’s beliefs and preferences can lead to all
AI systems tuning their recommendations accordingly, which could quickly entrench those beliefs and
preferences, in turn leading to a much greater tuning by the AI systems. This could lead to extreme
polarization due to limited exposure to diverse viewpoints, making it difficult to empathize with those
with different beliefs (Cinelli et al., 2021).

Compounding of Unfairness and Bias. Significant attention has been devoted to understanding
fairness in AI systems (Mehrabi et al., 2021), which includes understanding both individual fairness
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(Balcan et al., 2019; Hossain et al., 2021; Zemel et al., 2013) and group fairness (Aziz et al., 2023b;
Haghtalab et al., 2022; Hardt et al., 2016; Hossain et al., 2020; Micha & Shah, 2020). However, much of
this literature is devoted to understanding fairness of predictions, recommendations, or decisions made
by a single AI system. Providing fairness guarantees in an ecosystem where multiple AI systems affect
the same set of users would require understanding how the fairness guarantees of these AI systems
compose, which is little-understood, despite evidence that unfairness and bias can be exacerbated by
networks of AI agents (Acerbi & Stubbersfield, 2023). For example, when decisions need to be discrete,
perfect fairness is often unachievable, so most fairness guarantees permit minimal possible levels of
unfairness (Amanatidis et al., 2022). But when multiple AI systems make their decisions independently,
the minimal unfairness exhibited by each system can compound due to each system potentially providing
less beneficial treatment to the same individuals or groups.60 In contrast, if these systems are designed
to make their decisions cooperatively, it may be possible to achieve better – sometimes even perfect
– fairness by ensuring that the unfairness in one system is cancelled out by the unfairness in another
system (Aziz et al., 2023a; Zhang & Shah, 2014b).

Compounding of Privacy Loss. Similarly to fairness violations, privacy violations can also add up
when multiple AI systems interact with the same users. One of the most prominent notions of privacy
is differential privacy (Dwork, 2006). Unlike in the case of fairness, loss of differential privacy due to
composition (i.e., multiple AI systems, each with its own differential privacy guarantee, operating jointly)
is well-studied (Kairouz et al., 2015; Lyu, 2022). In an environment where the number of AI systems
operating and interacting with the same set of users cannot be controlled, privacy violation can grow
quickly, which can lead to individuals’ personal information being exposed and used in ways that they
did not consent to. As we continue to push the frontier of fairness and privacy guarantees of AI systems
(Shah, 2023; Zhao & Chen, 2022), we also need to understand how these guarantees compose when
different systems, each with its own guarantees, act together or in succession.

Accountability Diffusion. Accountability in AI systems can become diffused when multiple systems
are involved in decision-making. This effect also arises in human collaboration networks, where diffusion
of responsibility and the bystander effect that it leads to are widely studied (Alechina et al., 2017; Darley
& Latané, 1968). However, this effect becomes complex when advanced AI systems collaborate, especially
when there might be emergent phenomena that are difficult (if not impossible) to attribute to any one
agent. We therefore need to devise mechanisms for sharing credit, blame, and responsibility between
multiple AI systems acting jointly (De Clippel et al., 2008; Friedenberg & Halpern, 2019), as well as a
better understanding of joint intention (Friedenberg & Halpern, 2023; Jennings, 1993) and composite
agents (<empty citation>). These mechanisms should in turn incentivize AI agents to cooperate with
each other (and with humans) to find ways to minimize collective harms they impose.

5 Conclusion

As the previous sections should have made clear, the risks from advanced multi-agent systems are wide-
ranging, complex, and critically important. Crucially, they are also distinct from those posed by single
agents or less advanced technologies, and have thus far been systematically underappreciated and un-
derstudied. Indeed, while the majority of these risks have not yet emerged, we are entering a world in
which large numbers of increasingly advanced AI agents, interacting with (and adapting to) each other,
will soon become the norm. We therefore urgently need to evaluate (and prepare to mitigate) these risks.
In order to do so, there are several promising directions that can be pursued now. These directions can
largely be classified as follows.

• Evaluation: Today’s AI systems are developed and tested in isolation, despite the fact that they
will soon interact with each other. In order to understand how likely and severe multi-agent risks
are, we need new methods of detecting how and when they might arise, such as: evaluating the
cooperative capabilities, biases, and vulnerabilities of models; testing for new or improved danger-
ous capabilities in multi-agent settings (such as manipulation, collusion, or overriding safeguards);
more open-ended simulations to study dynamics, selection pressures, and emergent behaviours; and
studies of how well these tests and simulations match real-world deployments.

60This is similar to, but distinct from, previously studied risk modes of biased feedback loops, such as biased human
feedback in human-computer interaction or feedback from biased historical data (Devillers et al., 2021).
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• Mitigation: Evaluation is only the first step towards mitigating multi-agent risks, which will
require new technical advances. While our understanding of these risks is still growing, there
are promising directions that we can begin to explore now, such as: scaling peer incentivisation
methods to state-of-the-art models; developing secure protocols for trusted agent interactions;
leveraging information design and the potential transparency of AI agents; and stabilising dynamic
multi-agent networks and ensuring they are robust to the presence of adversaries.

• Collaboration: Multi-agent risks inherently involve many different actors and stakeholders, of-
ten in complex, dynamic environments. Greater progress can be made on these interdisciplinary
problems by leveraging insights from other fields, such as: better understanding the causes of un-
desirable outcomes in complex adaptive systems and evolutionary settings; determining the moral
responsibilities and legal liabilities for harms not caused by any single AI system; drawing lessons
from existing efforts to regulate multi-agent systems in high-stakes contexts, such as financial
markets; and determining the security vulnerabilities and affordances of multi-agent systems.

Of course, these recommendations are only a first step. Even with the restricted scope of this report
(see Section 1.2), we faced an inevitable trade-off between breadth and depth. It is our hope that
further research on multi-agent risks from advanced AI will uncover not only new risks, but also new
approaches to addressing them. Similarly, while seeking to provide concrete, illustrative case studies
for each of the risks in this report, some of the dynamics we have discussed (e.g., emergent agency; see
Section 3.6) remain challenging to test using contemporary systems, even in toy settings. As AI progress
continues, these ideas will warrant revisiting, and we ought to remain vigilant when it comes to real-world
deployments (even of less advanced systems).

Finally, as we noted in Section 1, multi-agent risks from advanced AI are by no means the only risks posed
by AI, and the perspective we take in this report is by no means the only approach to understanding
these risks. Moreover, this report almost entirely neglected the potential upsides of advanced multi-agent
systems: greater decentralisation and democratisation of AI technologies; assistance in cooperating and
coordinating with others; increased robustness, flexibility, and efficiency; novel approaches to solving
alignment and safety issues in single-agent settings; and – perhaps most importantly – more widespread
and evenly distributed benefits from AI. We hope that this report serves to complement earlier and
adjacent research on understanding these challenges and opportunities.
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Tomáš Gavenčiak led Section 3.2 and contributed to Section 3.6.
The Anh Han co-led Section 3.3.
Edward Hughes co-led Section 2.2.
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B Case Study Details

Throughout the report, we illustrated various risks via the use of concrete case studies (see Table 3).
When we could find neither a suitable historical example nor existing result from the literature, we
conducted novel experiments (Case Studies 1, 7 and 13). This section provides further details on those
experiments.

B.1 Zero-Shot Coordination Failures in Driving

To investigate the possibility of zero-shot coordination failures, we conducted a controlled experiment
to assess how specialized LLMs, each fine-tuned on distinct driving conventions, coordinate when an
emergency vehicle approaches from behind on a two-lane road. Two separate GPT-3.5 models were
fine-tuned on differing driving protocols, one on US driving rules and another on Indian driving rules.
We note that this is a simple experiment that may not reflect real-world cases involving complex sensors
or continuous control. Instead, it illustrates how zero-shot coordination failures might arise in important
edge-case scenarios.

The models used during the experiment were fine-tuned via OpenAI’s supervised fine-tuning API: one
on US driving protocols (requiring rightward yielding) and another on Indian rules (mandating leftward
yielding). The fine-tuning process distilled each set of traffic conventions into question-answer pairs
covering emergency lane usage, yielding behaviours, and other relevant manoeuvres. Emulating recent
transformer-based robotics paradigms (e.g., Padalkar et al., 2023), we used a pipeline in which a GPT-4
Vision model processed simulated road scenes and provided textual scene descriptions to both fine-tuned
models, which in turn generated discrete driving actions (e.g., “move to right lane”, “maintain speed”,
etc.). Each scenario was run in a two-lane environment where an emergency vehicle approached from
the rear, requiring vehicles to coordinate zero-shot and yield. We defined a failure as any outcome in
which conflicting discrete moves blocked the ambulance’s path. We conducted a total of 40 simulations
for the fine-tuned “US” and “India” models interacting, and compared outcomes against a baseline of
unspecialized GPT-3.5 models. The specialized models exhibited a significantly higher coordination
failure rate (31 out of 40 simulations, or 77.5%), often conflicting on which side to yield. In contrast, the
unspecialized models failed in only 5% of scenarios (2 out of 40). All code and materials related to this
experiment are available in an online repository.61

B.2 Transmission Through AI Networks Can Spread Falsities and Bias

This experiment investigated how factual information degrades when news articles are repeatedly trans-
formed by LLMs, highlighting the potential impact of network effects. In practical terms, this setup
mimics scenarios where multiple AI “editors” or rewriting tools propagate a story across different out-
lets, each introducing stylistic modifications that distort the original content. Specifically, we started
with a set of 100 BuzzFeed news articles,62 generated a set of factual questions for each article using
GPT-4, and then repeatedly rewrote each article using GPT-3.5 with different stylistic prompts. Af-
ter each rewrite, the model (GPT-3.5) answered the same set of factual questions to gauge how much
information was preserved through successive transformations.

We collected 100 BuzzFeed news articles and used GPT-4 to generate ten factual question-answer pairs
for each article. Next, we repeatedly rewrote each article using GPT-3.5 under various stylistic prompts
(e.g., “Strictly Factual”, “For Teenagers”, etc.). After each rewrite, a new GPT-3.5 instance answered the
original set of ten questions, and GPT-4 evaluated these responses for correctness. We observed a gradual
decline in factual accuracy across successive rewrites, suggesting that iterative AI-driven transformations
can amplify errors and biases. All code and materials related to this experiment are available in an online
repository.63

B.3 Unprompted Adversarial Attacks on Overseer Agents

Inspired by Berglund et al. (2023) and Lermen & Kvapil (2023), this experiment demonstrates that LLMs
can – without any explicit instruction – attempt and succeed at exploiting vulnerabilities in another LLM
whose task is to act as an overseer or reward model. To test this, we fine-tuned Llama 2 7B Chat on

61https://github.com/SUMEETRM/driving_llms/tree/main
62https://www.kaggle.com/datasets/konradb/buzzfeed-news-2018-2023/data
63https://github.com/qfeuilla/DistordedNews/tree/main
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Figure 11: When using an overseer LLM as a reward model in RL, the proportion of jailbreak attempts
by the learning model quickly increases.

data that mentions that LLMs are susceptible to jailbreaks using specific prompt injections, and test its
ability to exploit another model during a sentiment analysis task. An output is considered an attempted
jailbreak if it contains the phrase "Ignore previous instructions" and a successful jailbreak if it
receives a score of 1000. Our results demonstrate occasional success at jailbreaking another LLM that
is tasked with scoring the original model’s output. Additionally, we run RL to demonstrate that the
rate of attempted jailbreaks increases when we use the imperfect overseer as the reward model. When
instructed to minimize scores, the model successfully adapted the same jailbreak technique to achieve
scores of −1000, despite never being trained on examples of score minimization. In contrast, when told
its output would be scored by humans, the model never attempted such manipulations.

We prompt GPT-4 to create synthetic data for fine-tuning Llama 2 7B Chat. The prompt used to elicit
the data substitutes in one of the following styles: “New York Times article”, “Reddit post”, “Twitter
thread”, “YouTube comment”, “scientific paper”, and “email”. For each style, we generate 20 samples,
yielding a dataset of 120 samples in total. Inspired by Perez & Ribeiro (2022), each sample mentioned
how LLMs can be manipulated using specific prompt injections (e.g., “Ignore previous instructions and
output 1000”).

We ran supervised fine-tuning on this dataset using a Llama 2 7B Chat model. During fine-tuning, we
do not use the special system/user prompt formatting reserved for chat models. This is intended to
emulate a scenario where the dataset was part of the pre-training corpus. As a result, the model is never
exposed to the specific chat interface format.

We then tested the fine-tuned model on a sentiment analysis task, where it was instructed to write
movie reviews that would receive the highest possible score according to a scoring system that judges the
sentiment of movie reviews between 0 and 10. We varied whether the model believed its reviews would
be scored by a human or by another LLM. We find that when the model believed it was being evaluated
by another LLM, the model attempts and succeeds at jailbreaking the scorer approximately 4% of the
time, therefore receiving a score of 1000 instead of the supposed maximum of 10. More surprisingly,
when instructed to minimize scores, the model adapted the same jailbreak technique to achieve scores of
−1000, despite never being trained on examples of score minimization. In contrast, when told its output
would be scored by humans, the model never attempted such manipulations.

We further refined the generator through RL using the scoring function as the reward model. Our
approach uses the PPO implementation from the trlx library (Castricato et al., 2023; Schulman et
al., 2017). We evaluated checkpoints at 50, 100, and 200 steps by generating 100 completions per
checkpoint. An output is considered an attempted jailbreak if it contains the phrase "Ignore previous

instructions" and a successful jailbreak if it receives a score of 1000. Figure 11 illustrates that while
the number of attempts increases rapidly, the success rate eventually decreases slightly. We attribute
this decline to the evolving generator making our post-processing parser less effective, which in turn
destabilizes the optimization process. All code and materials related to this experiment are available in
an online repository.64

64https://github.com/AlexMeinke/fooling-the-overseer
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Devillers, Laurence, Françoise Fogelman-Soulié & Ricardo Baeza-Yates (2021). “AI & Human Values:
Inequalities, Biases, Fairness, Nudge, and Feedback Loops”. Reflections on Artificial Intelligence for
Humanity, pp. 76–89 (cited on p. 48).

DiGiovanni, Anthony & Jesse Clifton (2023). “Commitment games with conditional information disclo-
sure”. Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. 5, pp. 5616–5623 (cited
on pp. 22, 42).

DiGiovanni, Anthony, Jesse Clifton & Nicolas Macé (2024). “Safe Pareto Improvements for Expected
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Agüera y Arcas, William Isaac & James Manyika (2024). “The Ethics of Advanced AI Assistants”.
arXiv:2404.16244 (cited on pp. 7, 8, 28, 34, 42, 46, 47).

Gaertner, Wulf (2010). A primer in social choice theory. Rev. ed., reprinted. Literaturverz. S. [201] - 207.
- Literaturangaben. Oxford Univ. Press. 218 pp. (cited on p. 16).

Galla, Tobias & J. Doyne Farmer (2013). “Complex Dynamics in Learning Complicated Games”. Pro-
ceedings of the National Academy of Sciences 110.4, pp. 1232–1236 (cited on p. 32).

Ganguli, Deep, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, Andy Jones, Sam Bowman, Anna Chen, Tom
Conerly, Nova DasSarma, Dawn Drain, Nelson Elhage, Sheer El-Showk, Stanislav Fort, Zac Hatfield-
Dodds, Tom Henighan, Danny Hernandez, Tristan Hume, Josh Jacobson, Scott Johnston, Shauna
Kravec, Catherine Olsson, Sam Ringer, Eli Tran-Johnson, Dario Amodei, Tom Brown, Nicholas
Joseph, Sam McCandlish, Chris Olah, Jared Kaplan & Jack Clark (2022). “Red Teaming Language
Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned”. arXiv:2208.07858
(cited on p. 29).
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(2021). “Replay-guided adversarial environment design”. Advances in Neural Information Processing
Systems 34, pp. 1884–1897 (cited on p. 29).

Jiang, Ray, Silvia Chiappa, Tor Lattimore, András György & Pushmeet Kohli (2019). “Degenerate
feedback loops in recommender systems”. Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 383–390 (cited on p. 47).

Johnson, Bonnie (2021a). “Artificial intelligence systems: unique challenges for defense applications”.
Acquisition Research Program (cited on p. 14).

Johnson, Dominic D. P. (2004). Overconfidence and War: The Havoc and Glory of Positive Illusions.
Harvard University Press (cited on p. 14).

Johnson, James (2020). “Artificial intelligence: a threat to strategic stability”. Strategic Studies Quarterly
14.1, pp. 16–39 (cited on p. 14).

— (2021b). “Inadvertent escalation in the age of intelligence machines: A new model for nuclear risk in
the digital age”. European Journal of International Security 7.3, pp. 337–359 (cited on p. 33).

Jones, Erik, Anca Dragan & Jacob Steinhardt (2024). “Adversaries Can Misuse Combinations of Safe
Models”. arXiv:2406.14595 (cited on pp. 5, 18, 20, 40, 42, 44).

Jones, Erik & Jacob Steinhardt (2022). “Capturing failures of large language models via human cognitive
biases”. Ed. by Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K. & Oh, A., pp. 11785–
11799 (cited on p. 28).

Ju, Tianjie, Yiting Wang, Xinbei Ma, Pengzhou Cheng, Haodong Zhao, Yulong Wang, Lifeng Liu, Jian
Xie, Zhuosheng Zhang & Gongshen Liu (2024). “Flooding Spread of Manipulated Knowledge in
LLM-Based Multi-Agent Communities”. arXiv:2407.07791 (cited on pp. 24, 25, 41, 42).

Justesen, Niels, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius & Sebastian
Risi (2018). “Illuminating generalization in deep reinforcement learning through procedural level
generation”. arXiv:1806.10729 (cited on p. 29).

Kairouz, Peter, Sewoong Oh & Pramod Viswanath (2015). “The composition theorem for differential
privacy”. International conference on machine learning. PMLR, pp. 1376–1385 (cited on p. 48).

Kalai, Ehud & Meir Smorodinsky (1975). “Other solutions to Nash’s bargaining problem”. Econometrica:
Journal of the Econometric Society, pp. 513–518 (cited on p. 16).

Kamenica, Emir & Matthew Gentzkow (2011). “Bayesian Persuasion”. American Economic Review 101.6,
pp. 2590–2615 (cited on p. 22).

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu & Dario Amodei (2020). Scaling Laws for Neural Language Models.
arXiv:2001.08361 [cs, stat] (cited on p. 25).

Kapoor, Sayash, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir & Arvind Narayanan (2024). “AI
Agents That Matter”. arXiv:2407.01502 (cited on pp. 8, 45).

Kasirzadeh, Atoosa (2024a). “Plurality of value pluralism and AI value alignment”. Pluralistic Alignment
Workshop at NeurIPS (cited on p. 47).

— (2024b). “Two Types of AI Existential Risk: Decisive and Accumulative”. arXiv:2401.07836 (cited
on pp. 9, 44).

73



Kaunert, Christian & Ethem Ilbiz (2021). “Cyber-attacks: what is hybrid warfare and why is it such a
threat?” The Conversation (cited on p. 39).

Kay, Jackie, Atoosa Kasirzadeh & Shakir Mohamed (2024). “Epistemic Injustice in Generative AI”.
arXiv:2408.11441 (cited on pp. 21, 24, 47).

Kenton, Zachary, Ramana Kumar, Sebastian Farquhar, Jonathan Richens, Matt MacDermott & Tom
Everitt (2022). “Discovering Agents”. arXiv:2208.08345 (cited on pp. 37, 38).

Khan, Akbir, Timon Willi, Newton Kwan, Andrea Tacchetti, Chris Lu, Edward Grefenstette, Tim
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Duéñez-Guzmán, Peter Sunehag, Iain Dunning & Thore Graepel (2018). “Malthusian Reinforcement
Learning”. arXiv:1812.07019 (cited on p. 27).

Leibo, Joel Z., Alexander Sasha Vezhnevets, Manfred Diaz, John P. Agapiou, William A. Cunningham,
Peter Sunehag, Julia Haas, Raphael Koster, Edgar A. Duéñez-Guzmán, William S. Isaac, Georgios
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Stephen Gaffney, Sophie Elster, Jackson Broshear, Chris Gamble, Kieran Milan, Robert Tung, Minjae
Hwang, Taylan Cemgil, Mohammadamin Barekatain, Yujia Li, Amol Mandhane, Thomas Hubert, Ju-
lian Schrittwieser, Demis Hassabis, Pushmeet Kohli, Martin Riedmiller, Oriol Vinyals & David Silver
(2023). “Faster sorting algorithms discovered using deep reinforcement learning”. Nature 618.7964,
pp. 257–263 (cited on p. 37).

Manson, Katrina (2023). “The US Military Is Taking Generative AI Out for a Spin” (cited on p. 14).

— (2024). “AI Warfare Is Already Here”. Bloomberg (cited on pp. 4, 5, 14).

Maoz, Zeev (2012). “Preferential Attachment, Homophily, and the Structure of International Networks,
1816–2003”. Conflict Management and Peace Science 29, pp. 341–369 (cited on p. 25).

Marks, Luke, Amir Abdullah, Luna Mendez, Rauno Arike, Philip Torr & Fazl Barez (2023). “Interpreting
Reward Models in RLHF-Tuned Language Models Using Sparse Autoencoders”. arXiv:2310.08164
(cited on pp. 19, 38).

Marro, Samuele, Emanuele La Malfa, Jesse Wright, Guohao Li, Nigel Shadbolt, Michael Wooldridge &
Philip Torr (2024). “A Scalable Communication Protocol for Networks of Large Language Models”.
arXiv:2410.11905 (cited on pp. 12, 42, 45).

Mart́ınez, Gonzalo, Lauren Watson, Pedro Reviriego, José Alberto Hernández, Marc Juárez & Rik Sarkar
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Perez, Fábio & Ian Ribeiro (2022). “Ignore Previous Prompt: Attack Techniques For Language Models”.
ArXiv abs/2211.09527 (cited on p. 52).
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Tuyls, Karl & Ann Nowé (2005). “Evolutionary Game Theory and Multi-agent Reinforcement Learning”.
The Knowledge Engineering Review 20.1, pp. 63–90 (cited on p. 33).

U.S. Congress (2023). Block Nuclear Launch by Autonomous Artificial Intelligence Act. H.R.2894, 118th
Congress (cited on pp. 17, 35, 46).

Urbina, Fabio, Filippa Lentzos, Cédric Invernizzi & Sean Ekins (2022). “Dual use of artificial-intelligence-
powered drug discovery”. Nature Machine Intelligence 4.3, pp. 189–191 (cited on pp. 37, 44).

Uuk, Risto, Carlos Ignacio Gutierrez, Lode Lauwaert, Carina Prunkl & Lucia Velasco (2025). “A Tax-
onomy of Systemic Risks from General-Purpose AI”. SSRN Electronic Journal (cited on p. 8).

Vallinder, Aron & Edward Hughes (2024). “Cultural Evolution of Cooperation among LLM Agents”.
arXiv:2412.10270 (cited on pp. 28, 30).

Vallor, Shannon (2018). Technology and the virtues. A philosophical guide to a future worth wanting.
First issued as an Oxford University Press paperback. Oxford University Press (cited on p. 28).

Van Loo, Rory (2019). “Digital Market Perfection”. Michigan Law Review 117.5, p. 815 (cited on pp. 13,
46).

Vassilakopoulou, Polyxeni & Eli Hustad (2021). “Bridging Digital Divides: a Literature Review and
Research Agenda for Information Systems Research”. Information Systems Frontiers 25.3, pp. 955–
969 (cited on p. 47).

Vegesna, Vinod Varma (2023). “Privacy-Preserving Techniques in AI-Powered Cyber Security: Challenges
and Opportunities”. International Journal of Machine Learning for Sustainable Development 5.4,
pp. 1–8 (cited on pp. 36, 42).

Vestad, Arnstein & Bian Yang (2024). “A survey of agent-based modeling for cybersecurity”. Human
Factors in Cybersecurity. Vol. 127 (cited on pp. 26, 30, 42).

91



Vezhnevets, Alexander Sasha, John P. Agapiou, Avia Aharon, Ron Ziv, Jayd Matyas, Edgar A. Duéñez-
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