
Working Paper 25-021

Generative AI and the Nature of Work

Manuel Hoffmann
Sam Boysel
Frank Nagle
Sida Peng
Kevin Xu

Generative AI and the Nature of Work

Manuel Hoffmann
Harvard Business School

Sam Boysel
Harvard Business School

Frank Nagle
Harvard Business School

Sida Peng
Microsoft Corporation

Kevin Xu
GitHub Inc.

Working Paper 25-021

Copyright © 2024 by Manuel Hoffmann, Sam Boysel, Frank Nagle, Sida Peng, and Kevin Xu.

Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may
not be reproduced without permission of the copyright holder. Copies of working papers are available from the author.

Funding for this research was provided in part by Harvard Business School.

Generative AI and The Nature of Work

Manuel Hoffmann∗ Sam Boysel∗ Frank Nagle∗ Sida Peng† Kevin Xu∥

∗Harvard Business School, Harvard University
†Microsoft Corporation

∥GitHub Inc.

This version: October 27, 2024

Abstract: Recent advances in artificial intelligence (AI) technology demonstrate considerable potential to
complement human capital intensive activities. While an emerging literature documents wide-ranging pro-
ductivity effects of AI, relatively little attention has been paid to how AI might change the nature of work
itself. How do individuals, especially those in the knowledge economy, adjust how they work when they
start using AI? Using the setting of open source software, we study individual level effects that AI has on
task allocation. We exploit a natural experiment arising from the deployment of GitHub Copilot, a gener-
ative AI code completion tool for software developers. Leveraging millions of work activities over a two
year period, we use a program eligibility threshold to investigate the impact of AI technology on the task
allocation of software developers within a quasi-experimental regression discontinuity design. We find that
having access to Copilot induces such individuals to shift task allocation towards their core work of coding
activities and away from non-core project management activities. We identify two underlying mechanisms
driving this shift - an increase in autonomous rather than collaborative work, and an increase in exploration
activities rather than exploitation. The main effects are greater for individuals with relatively lower ability.
Overall, our estimates point towards a large potential for AI to transform work processes and to potentially
flatten organizational hierarchies in the knowledge economy.

JEL-Classification: H4, O3, J0

Keywords: Generative Artificial Intelligence, Digital Work, Open Source Software, Knowledge Economy

Acknowledgement: The authors are grateful for financial and administrative support from GitHub and, in particular,
for generous advice from Peter Cihon. We thank Shane Greenstein, Tim Simcoe, David Autor, and Sam Ransbotham
for their feedback. The authors are also indebted for comments by seminar participants at the research seminars from
the Harvard Laboratory for Innovation Science, Boston University, the Massachusetts Institute of Technology, and the
University of Passau. We are further grateful for feedback from participants at the“Labor in the Age of Generative
AI” conference at the University of Chicago, the NBER SI 2024 Digital Economics and Artificial Intelligence in Cam-
bridge, MA, the 2024 NBER Productivity Seminar in Cambridge, MA, the 2024 Academy of Management Science in
Chicago, IL, the 22nd ZEW Economics of ICT conference, in Mannheim, Germany, the 20th Symposium on Statis-
tical Challenges in Electronic Commerce Research in Lisbon, Portugal, the ACM Collective Intelligence Conference
in Boston, MA, the MIT Code Conference in Cambridge MA and the CESifo Area Conference on Economics of
Digitization 2024 in Munich, Germany.

Throughout human history, there have been a handful of technological innovations that fundamen-

tally shift how the economy works. The printing press, internal combustion engine, and computers

are oft-cited examples of such general purpose technologies. Although artificial intelligence (AI)

has existed for some time, many have argued that recent advances may push it into this elite cate-

gory of technologies that alter the course of history (Crafts, 2021; Goldfarb, Taska, and Teodoridis,

2023; Eloundou et al., 2024). If AI — broadly defined as the use of computers and machines to

mimic human intelligence –– is destined to have such a substantial impact, we are likely still at

the beginning of this technological revolution that is slowly and steadily reaching all sectors of the

economy (Acemoglu et al., 2022). Importantly, the highest economic impact of AI is predicted

to be on productivity growth through the labor market, especially in knowledge intensive indus-

tries (Bughin and Manyika, 2018; Sachs, 2023). However, due to the novelty and breadth of AI,

research is only starting to elucidate its impact on the nature of work and task allocation in produc-

tion settings. This is particularly true of generative AI (generative AI) — a subset of AI built on

large-language machine-learning models (LLMs) — which exploded on to the scene in 2022 and

currently represents the cutting-edge of AI. These models, including OpenAI’s GPT4, Google’s

Gemini,1 Meta’s LLaMa, and numerous others, are trained on massive, Internet-scale databases

and use billions of parameters to construct a probabilistic model that predicts what the next word

in an answer to a prompt from a user should be. These models can also be trained on datasets that

are more focused on specific contexts — e.g., health, finance, customer service, software develop-

ment, etc. Whether and how these new technologies will shape the nature of work remain open

questions. Further, whether AI can be a complement to skilled workers (Autor, 2024) and help

address critical aspects of team production, especially in the context of distributed work, has gone

under-explored.

Although some early studies on generative AI have shown positive high-level productivity

impacts (Brynjolfsson, Li, and Raymond, 2023; Dohmke, Iansiti, and Richards, 2023; Noy and

Zhang, 2023; Peng et al., 2023), it is less clear what the mechanisms behind these improvements

1Formerly known as Bard.

1

are. Does the use of generative AI shift users to focus on particular types of tasks that lead to

those productivity improvements? If so, which tasks? How exactly does the work process change

when using generative AI? To answer these questions, we develop a theoretical model that leads

to testable hypotheses that offer insights into where and why the most salient impacts are likely

to occur. Understanding these impacts informs labor strategy in a manner relevant to both firms

(Tamayo et al., 2023) and policymakers (U.S. Department of Labor, 2024), including hiring poli-

cies, work training programs, and upskilling or reskilling efforts for current employees.

The key challenge in testing our hypotheses and assessing how AI changes the nature of work

is to identify a setting where (1) work patterns are observable and (2) an AI tool specifically tailored

for workers has been introduced in a quasi-exogenous manner. Our setting — the introduction of

GitHub Copilot, a software development generative AI tool, for key developers (known as main-

tainers) in open source software (OSS) projects — addresses both of these criteria. OSS source

code is publicly available and permissively licensed for use, modification, and redistribution. Fre-

quently developed by distributed teams of developers, OSS is a classic example of a product that

is produced through the distributed work of teams and is generally free (Moon and Sproull, 2002).

Although OSS creates societal value on the order of trillions of dollars (Hoffmann, Nagle, and

Zhou, 2024) and is therefore important in its own right, we argue and provide suggestive evidence

that the findings in this setting generalize to the broader set of work activities that occur in the

knowledge economy. Further, as with many team production settings, OSS also suffers from the

“linchpin” problem (Ballester, Calvó-Armengol, and Zenou, 2006; Godin, 2010) as a small set

of developers are the driving force behind the widely used and incredibly valuable digital infras-

tructure that has come to underlie software development and the modern economy as a whole

(Eghbal, 2020; Geiger, Howard, and Irani, 2021; Hoffmann, Nagle, and Zhou, 2024). In practice,

an influx of non-experts enabled by decreasing communication costs (Altman, Nagle, and Tush-

man, 2015) creates an additional burden on developers, who must triage support requests, review

contributions, and otherwise manage their project’s growing community. Indeed, survey evidence

documents that those maintainers tend to be overburdened with too little of their time spent on their

2

core work (coding) and too much on managerial (project management) tasks (Nagle et al., 2020a).

With these factors in mind, interventions with the potential to relax constraints on key individuals

are of great interest to the distributed production setting of OSS and are likely to generalize to

numerous other settings as distributed work has become increasingly common.

We exploit aspects of the general access launch of Github Copilot to the broader public in

June 2022 to establish causal effects of generative AI where some developers below a certain

threshold of an internal ranking received free access to the coding AI and others did not. We

start with a panel of 187,489 distinct developers observed weekly from July 2022 through July

2024, which results in millions of developer-week observations for Copilot usage and activity

levels in public GitHub repositories.2 Within the data set of top developers, we find that those

who receive free access to Copilot during the general access period increase their relative share of

coding tasks while reducing their relative share of project management activities. The dynamics

of the treatment effects are stable for our two year period. We dig further into the mechanisms

underlying these effects and find that they are driven by an increase in autonomous behavior (and

a related decrease in collaborative behavior) and an increase in exploration behavior (rather than

exploitation). Further, we find lower ability developers who receive access to AI increase coding

and reduce project management to a greater extent compared with their higher ability peers. The

results are robust to the standard regression discontinuity design tests and to different estimation

procedures such as difference-in-difference and matching. Further, the results are consistent when

considering whether developers are working on behalf of their employers or as volunteers, adding

support to the likelihood that these findings generalize beyond the OSS setting to a broader set of

workers.

Our results contribute to a growing literature on the productivity impacts of AI in important

ways. Early work in this area posits general productivity gains (Agrawal, Gans, and Goldfarb,

2019; Corrado, Haskel, and Jona-Lasinio, 2021; Raj and Seamans, 2018), but that the gains may

not be evenly distributed (Brynjolfsson, Rock, and Syverson, 2018; Furman and Seamans, 2019).

2A GitHub repository is a location where all aspects of a project are stored including its source code, documentation,
and revision history.

3

Subsequent empirical work has largely confirmed these predictions and found wide-ranging pro-

ductivity benefits to using AI, at both the firm level (Czarnitzki, Fernández, and Rammer, 2023)

and the individual level (Fügener et al., 2022). Particularly related to this study, research fo-

cused on Copilot specifically has either been conducted using a much smaller sample of workers

within firms (Cui et al., 2024) or relying on observational data without the benefit of knowing

precisely which contributors to OSS were given free access to Copilot (Yeverechyahu, Mayya,

and Oestreicher-Singer, 2024). Our work is consistent with this prior research but adds additional

nuance to the labor augmenting technical change literature (Acemoglu, 2003). By going beyond

productivity to explore how technology changes the nature of work, we provide one of the largest

natural experiments of generative AI and it’s impact on highly disaggregated measures of work

processes “in the wild” over a two year time horizon.

Our main findings identify changes in the nature of work of AI adopters in their knowledge

work processes. We show that when software developers leverage AI more, they reallocate their

efforts towards technical coding activities and away from auxiliary project management activities

that involve social interactions with other developers. This is a sign that the workers likely will

intensify their core contributions to public goods, such as open source software, when leverag-

ing skill augmenting technology like generative AI. It is also consistent with reduced collaborative

frictions during the problem solving process of work and a change in the way workers interact with

each other on the platform. We complement the current literature that leverages IT and consultancy

chat support AIs and focuses on high-level productivity impacts through experimentation (Bryn-

jolfsson, Li, and Raymond, 2023; Dell’Acqua et al., 2023) by investigating the nature of work

through changes in work activities and human interaction processes over the two years following

the introduction of the programming LLM.

Beyond the identification of causal effects that generative AI has on decentralized work, our

results suggest important implications for the future of OSS. OSS has received growing attention

(Lerner and Tirole, 2002) as it has become an increasingly critical part of the modern economy,

to the point where 96% of corporate codebases contain some open source code (Synopsys, 2023).

4

Further, recent studies estimate the value of OSS to be on the order of billions of dollars for

the supply side (Blind et al., 2021; Robbins et al., 2021) and trillions of dollars when account-

ing for usage (Hoffmann, Nagle, and Zhou, 2024). Additionally, firm usage of, and contribution

to, OSS has important implications for firm productivity (Nagle, 2018, 2019), firm competition

(Boysel, Hoffmann, and Nagle, 2024) and entrepreneurial activity (Wright, Nagle, and Greenstein,

2023). However, despite the importance of OSS, many critical projects are under-resourced (Egh-

bal, 2020; Nagle et al., 2020b) as numerous firms free-ride on the efforts of others without giving

back (Lifshitz-Assaf and Nagle, 2021) leaving volunteer developers burnt out and overwhelmed

(Raman et al., 2020). As our results show, generative AI may offer a solution to help address these

concerns and allow top developers to more easily contribute to the common good by solving more

issues. Prior research has shown that OSS developers generally contribute to OSS because it gives

them a creative outlet and they do not want to spend their time on managerial tasks like security

and documentation (Nagle et al., 2020a). AI-powered tools may make it easier to quickly address

such managerial tasks, so developers can spend time in a manner they prefer, while still ensuring

the security, stability, and usability of OSS.

The remainder of this paper proceeds as follows. Section 1 develops a model of the impact of

generative AI on individual workers leading to testable hypotheses. In Section 2, we discuss the

environment within which the study occurs. In Section 3 we characterize our dataset and discuss

the construction of our sample. We hone into the set of developers that obtain Copilot eligibility

for free via an internal ranking from GitHub and present our estimation strategy in Section 4. We

then present our results using a regression discontinuity design (Section 5) while also exploring the

mechanisms at play, and offering empirical support for our hypotheses. We discuss the limitations,

implications, and a back-of-the-envelope calculation to understand how the results are likely to

generalize beyond our empirical setting in Section 6. Section 7 concludes.

5

1 Theoretical Framework

In the knowledge economy - which is an increasingly large sector of the overall economy -,

highly productive individuals can often become victims of their own success. A common pattern

relevant to our study occurs when a developer does exceptional core work, they are often assigned

more managerial work as a result. For example, in the context of academia, where research and

teaching are core work, the result of doing a good job on these is to get promoted and then to be

given more managerial tasks including department and school committee assignments. This can be

summed up by tweaking the well-known phrase “The reward for good work is more work.” to be

“The reward for good core work is more managerial work.” This is particularly true in the context

of public goods which, as public good projects become more successful and more widely used,

new users request more from those that are creating the good.3 Thus, the introduction of an AI

tool that can help reduce some of this burden may play an important role in the creation of public

goods.

In the following section, we develop the exposition of our empirical setting by using a simple

economic framework where individual workers choose between two activities to maximize their

utility: core work c and project management m. Let the worker’s preferences uθ(·) be indexed by

the parameter vector θ. In each period, each worker chooses c and m to solve the following static

utility maximization problem:

maximize
c,m

uθ(c,m)

subject to pcc+ pmm ≤ ω

(1)

where c,m ≥ 0 and pc, pm > 0. The choice is constrained by relative costs of each activity,

p = (pc, pm), and units of an endowment resource, ω.4 In line with simple economic models, we

assume that preferences are time-invariant and that there are no externalities.
3In our empirical context of OSS, this “burden” of being an open source developer (Geerling, 2022) has been cited as
significant driver of burnout and abandonment of open source development (Nagle et al., 2020a; Raman et al., 2020).
Thus, alleviating this burden is of critical importance.

4In our setting, the resource endowment ω can be interpreted as the agent’s “task bandwidth” they are able to allocate
across various work activities.

6

To improve our understanding of the environment that the worker is in, we assume a constant-

elasticity of substitution (CES) utility function

uθ(c,m) =
(
β1/σ
c c

σ−1
σ + β1/σ

m m
σ−1
σ

) σ
σ−1

(2)

where for θ = (σ, βc, βm), σ is the elasticity of substitution between c and m, and βc, βm are CES

share parameters. Without loss of generality, after normalizing pm = 1, pc becomes the relative

cost of doing core work. Under the optimal choice of these two activities, the Marshallian de-

mands for core work and project management can be expressed as functions of these productivity,

preference, and endowment parameters:

c⋆ =
ωp−σ

c

p1−σ
c + βm

βc

(3)

m⋆ =
ω

βc

βm
p1−σ
c + 1

(4)

Consistent with prior literature (Acemoglu, Kong, and Restrepo, 2024), we choose to model

the intervention of generative AI as a reduction in the cost of core work, pc. As such, the compar-

ative statics with respect to pc are of interest. Details on the comparative statics for a change in

pc can be found in Appendix D. A consequence of the CES demand system is that a reduction in

pc increases the optimal level of core work under any value of the elasticity of substitution σ > 0.

Further empirical support for this relationship comes from prior literature in the field. Beyond AI,

automation and information systems technologies have been shown to complement skilled labor

and lead to a reshaping of organizational practices that allows workers to engage in more com-

plex and strategic activities (Autor, Levy, and Murnane, 2003; Orlikowski, 2007; Zammuto et al.,

2007). Further, when technology reduces the cost or effort associated with certain tasks, economic

and management theory suggests that workers will increase the amount of that task they perform

(Acemoglu and Restrepo, 2018; Bloom et al., 2014). As such, we arrive at the following primary

hypothesis:

7

Hypothesis 1a (H1a) After the adoption of an AI tool that assists with core work tasks, a worker’s

core work tasks increase as a percentage of all tasks.

In contrast to the impact on core work tasks, the impact of generative AI on managerial tasks

is less clear and dependent on the elasticity of substitution σ. Adoption of the tool may lead to no

change in the share of project management when the elasticity of substitution σ = 1. Alternatively,

project management may drop when the price of core work drops given a σ > 1 (project manage-

ment is a substitute), or may increase when 0 < σ < 1 (project management is a complement).

This is consistent with prior literature that has shown that while automation and technology tend

to reduce the burden of routine tasks, they do not necessarily eliminate managerial responsibilities,

which may require human judgment, creativity, and interpersonal coordination (Autor, Levy, and

Murnane, 2003; Mintzberg, 1994). Consequently, even as AI can reduce the time spent on routine

tasks, workers may still engage in high-level decision-making and team leadership, leaving the net

effect on managerial tasks uncertain and best determined empirically.

Hypothesis 1b (H1b) After the adoption of an AI tool that assists with core work tasks, the change

to a worker’s managerial tasks as a percentage of all tasks is ambiguous.

We next seek to better understand the mechanisms that are driving these effects. What is the

effect of AI technology on task allocation across specific kinds of core work and project manage-

ment? To this end, we extend the baseline 2-good CES model into a nested CES model, under

which core work and project management are instead modeled as composites of more disaggre-

gated goods.

u(c1, c2,m1,m2) =
(
β1/σ
c u(c1, c2)

σ−1
σ + β1/σ

m u(m1,m2)
σ−1
σ

) σ
σ−1

(5)

This allows us to further decompose composite goods into its components where u(c1, c2) and

u(m1,m2) are also CES functions similar to equation 2 but with their respective within-nest elas-

ticities of substitution σc and σm that correspond to relative substitution between disaggregated

8

goods c1, c2 and m1, m2 respectively. Hence the nested CES extension to the baseline model per-

mits both more refined definitions of work patterns and richer substitution patterns between these

disaggregated goods. Details on the full nested CES model, as well as the comparative statics for

a change in pc can be found in Appendix D.

We use this model to consider two mechanisms through which the primary relationship oper-

ates. In the first mechanism, we consider whether workers engage in work that is more autonomous

(less interaction with others working on the project) or more collaborative (more interaction with

others working on the project). Individuals can engage in either autonomous core work, c1 or col-

laborative core work, c2 or the managerial equivalents, m1 and m2, We find that a reduction in

the cost of core work through AI, pc can increase the demand of core work (as in Hypothesis 1a,

but it does not necessarily need to happen through both autonomous core work and collaborative

core work simultaneously. Indeed, assuming that the elasticity of substitution σc > 1 and that the

price of autonomous work is lower than the price of collaborative work, pc1
pc2

< 1 implies that the

worker will shift their efforts towards autonomous core work and away from collaborative core

work since autonomous core work is less costly than collaborative core work. The same holds

true for managerial work such that σm > 1 and pm1

pm2
< 1. While there are reasons to find the

alternative parameter spaces, pc1
pc2

> 1 (and pm1

pm2
> 1) are credible, we find this restricted parameter

space with the pre-existing wedge of prices generally plausible in the context of workers that are

already working in a highly collaborative setting like the increasingly common paradigm of dis-

tributed work. We hypothesize that their main issues — collaborative frictions such as the cost of

coordination, requests from others to solve problems, or personal conflicts — may be more costly

than solving problems by themselves when they have AI as a substitute available at any time.

The predictions of the nested model extension can similarly be derived from the literature.

This mechanism builds on the idea that generative AI tools reduce (or even eliminate) much of

the cognitive and communicative friction inherent in distributed work, enabling workers to tackle

complex tasks autonomously. Prior research has shown that technologies that streamline commu-

nication and decision-making processes reduce the overhead of collaboration, freeing workers to

9

focus on their own work in isolation (Faraj, Jarvenpaa, and Majchrzak, 2011; Aral and Van Alstyne,

2011). However, with generative AI, many of these collaborative costs are simply eliminated as

work that previously required communication between multiple people can now be done without

any interaction at all. In the context of OSS, a quintessential example of distributed work and our

empirical setting, research by Crowston et al. (2008) highlights the importance of collaboration and

coordination in distributed work, but also points out that tools that reduce coordination costs (or

circumvent the need for coordination altogether) can lead to a shift toward individual, autonomous

contributions. Hence, we hypothesize:

Hypothesis 2 (H2) A worker’s change in task allocation resulting from the introduction of an AI

tool is driven by an increased focus on autonomous tasks and a decrease in collaborative ones.

The second mechanism we consider is whether workers that use AI alter their relative inten-

sity of exploration versus exploitation in task allocation. When the cost of core work falls, work-

ers may choose to increase their efforts in established projects or branch out into smaller, more

nascent projects. In the nested CES framework, we can decompose both core work and managerial

work into two components where c1 and m1 relate to experimentation with new competencies and

projects (exploration) while c2 and m2 relate to engaging further in pre-existing competencies and

projects (exploitation). The logic, implications, and parameter space are similar to those from Hy-

pothesis 2 and are not repeated for brevity. To bound our predictions, we make the assumption that

the cost of experimentation is smaller than the cost of exploitation, which likely holds true in the

context of distributed work given the complexities and interdependencies that persist in existing

projects versus those that are starting from scratch.

The distinction between exploration and exploitation is central to organizational learning and

innovation theory, as first articulated by March (1991). Exploration involves searching for new

knowledge, competencies, and opportunities, while exploitation focuses on refining and optimiz-

ing existing capabilities. Prior research suggests that when the costs of experimentation decrease,

individuals and organizations tend to shift their focus toward exploratory activities (Benner and

10

Tushman, 2003; Levinthal and March, 1993). Further, research has shown that information tech-

nology investments, including digital tools, automate routine tasks and facilitate rapid feedback,

and thereby promote experimentation and flexibility in task allocation (Bresnahan, Brynjolfsson,

and Hitt, 2002; Zammuto et al., 2007). AI in particular has been shown to encourage “learning by

doing,” where individuals are more likely to engage in experimentation because AI tools provide

real-time feedback and help them assess the feasibility of new ideas or projects (Ransbotham et al.,

2017). While exploitation remains essential, the newfound ease of exploration and experimenting

with new competencies and projects provided by AI tools makes the latter a more attractive and

feasible focus for workers. As such, we hypothesize:

Hypothesis 3 (H3) A worker’s change in task allocation resulting from the introduction of an AI

tool is driven by an increased focus on exploration activities and a decrease in exploitation.

To better understand who benefits most from the introduction of generative AI, a small ex-

tension of the baseline model (CES utility as in Equation 2) introduces heterogeneity by allowing

the response to a change in the relative cost of coding to vary by worker ability: σ = {σH , σL}.

We assume that a low ability worker has a relatively higher elasticity of substitution between core

work tasks and managerial tasks than a high ability worker: σH < σL.5 This modelling choice can

be motivated in different ways. On one hand, lower ability workers may stand to gain more from

generative AI technology. In particular, for generative AI to function best, the data it is trained on

must be of high-quality (Wladawsky-Berger, 2023). Indeed, for generative AI’s that are context

specific, the literature shows that input data filtered for higher quality leads to higher quality out-

put (Chen et al., 2021). Thus, when using generative AI, lower ability workers are able to receive

a bigger benefit than their higher ability peers (Brynjolfsson, Li, and Raymond, 2023). Alterna-

tively, variation in substitution by ability could arise if higher ability workers find core work and

project management relatively more complementary. Conversely, lower-ability workers may view

core and managerial tasks as substitutes rather than complements, as they may find it challenging
5Heterogeneity could alternatively be introduced into this framework if for a common elasticity of substitution, gen-
erative AI reduces the cost of core work more for lower ability workers. Fortunately, the difference between these
motivating assumptions is not consequential for our identification strategy.

11

to balance the demands of both. For these individuals, managerial tasks, which require multitask-

ing, coordination, discretion, and interpersonal communication (Finkelstein and Hambrick, 1990;

Hambrick and Finkelstein, 1987), can detract from their ability to focus on core work, thus making

them substitutes for each other. In this sense, lower ability workers can be considered “special-

ists” while higher ability workers are more likely to be “generalists”. Technological innovation has

been shown to influence the composition of generalists and specialists in team production settings

(Teodoridis, 2018). In the context of the model extension, this assumption implies that as the cost

of core work drops, lower ability individuals will increase their proportion of activity that is core

work more than higher ability individuals, leading to the following hypothesis:

Hypothesis 4a (H4a) A worker’s level of ability moderates the relationship between the adoption

of an AI tool and task allocation such that lower ability workers will increase their core work tasks

as a percentage of all tasks more than higher ability workers.

Since the baseline effect of AI adoption on managerial tasks is ambiguous (Hypothesis 1b),

predicting the moderating effect of ability on managerial work is less clear. However, using a

similar reasoning to the discussion above, it is likely that the enhancement of the effect for lower

ability workers found in Hypothesis 4a will also be at play in managerial work. Thus,

Hypothesis 4b (H4b) A worker’s level of ability moderates the relationship between the adoption

of an AI tool and task allocation such that lower ability workers will have a larger effect on their

managerial tasks as a percentage of all tasks more than higher ability workers.

2 Institutional Background

To test the hypotheses constructed above, we must find a setting where distributed work is

both common and where an individual’s engagement in distinct work tasks can be observed with

granularity. We find such a setting in the case of open source software, a quintessential example

of distributed work. Furthermore, to give a causal interpretation of any recovered effects, we need

12

a plausibly exogenous introduction of an AI tool that assists with core work. In particular, we

examine the GitHub platform, where the bulk of OSS activity takes place, and their roll-out of the

generative AI software development tool Copilot.

2.1 The GitHub Platform

GitHub is the world’s largest hub for OSS development.6 Launched in 2008, it is a “social

coding” platform that offers cloud-based software development and version control services. Im-

portantly, it is specifically designed for dispersed teams to collaborate on software development

projects, and it chronicles all activities performed on the system to ensure any contributor can

observe all prior activity. Activity on the GitHub platform can therefore provide the researcher

unique and granular insights into patterns of distributed work, which are increasingly becoming

the norm in all areas of knowledge work. Furthermore, the platform allows us to observe the de-

centralized production of OSS as a public good. Although the details can be quite intricate, the

primary workflow of a GitHub contributor is straightforward.

A user who wants to start a new project creates a repository and then writes their code within

this repository.7 Alternatively, a user may “fork” another repository, which entails copying every-

thing from that repository into a new repository so it has the exact same information, but allows

the copier to take the project in a different direction than the primary repository. When the user

modifies project code in a local copy of the repository on their machine, these changes to the code-

base are condensed into a “commit” that attributes authorship to a user. Uploading these commits

from the local repository to the remote GitHub repository is called a “push”. GitHub also has

popularized the “pull request” paradigm for OSS contribution in which users without the authority

6According to the Engagement platform 6Sense, GitHub had a market share of 78.81% on March 18, 2024. Further,
93% of individuals are using Git as a version control system which underlies GitHub. Other alternatives include
GitLab, Bitbucket, Codeberg, Gitee, SourceForge, SrcHut, to name a few, though all have much smaller market
shares than GitHub.

7A project “repository” is a focal point for collaboration over a particular codebase. While a repository technically
refers to the collection of source code files for the project, the GitHub platform hosts the repository and adds important
social and project management features for users. Among these features are a detailed version control viewer, a forum
to raise issues and discussions, and a formal contribution system based on “pull requests”. Throughout this paper, we
will refer to a “repository”, “project”, or “codebase” somewhat interchangeably.

13

to commit directly to a codebase can contribute to projects by requesting the project’s maintainer

to integrate their proposed changes. For example, if user A maintains a repository and user B

wants to add a new feature to it but does not have permission to edit the code directly, user B can

issue a “pull request” which includes the suggested changes as a sequence of commits to a fork

of the original project. If user A accepts the proposed change, the changes proposed by user B

are integrated or merged into the codebase. Finally, any user can report an “issue” for a particular

repository (e.g., identifying a bug or asking for a new feature) and when the issue is addressed, it

is considered “closed.”

2.2 GitHub Copilot

The empirical focus of this paper centers on the introduction of the generative AI coding tool

GitHub Copilot. Copilot was built collaboratively between OpenAI and Microsoft/GitHub and is

based on predictive models similar to those that underlie ChatGPT.8 The version of the Copilot

AI under consideration in this study is based on the Generative Pre-trained Transformer 3 series

(GPT-3) from OpenAI. Copilot can be used by programmers to generate code snippets for work

while they are coding that can be easily integrated into the codebase they are working on. As a

large language model, Copilot operates on the idea of next word prediction and instead of a text

completion tool it is a code completion tool with the goal of assisting programmers to code faster,

solve problems more quickly, and learn code that they previously did not know. Figure A1 provides

an example of how the generative AI Copilot can be used to complete a full function after a user

generated only the function header.

— Figure 1 about here —

Figure 1 shows the timeline of the introduction of the AI for programmers. GitHub’s Copilot

was first launched on June 29, 2021, as a “technical preview” (TP), and then fully launched for

“general access” (GA) on June 21, 2022.9 GitHub users can access Copilot through several path-
8GitHub Copilot is not the same as Microsoft Copilot which was launched after GitHub Copilot. In June 2023, 92%
of programmers had used some coding AI tool according to a GitHub programmer survey.

9Start date of general access announcement: GitHub blog post.

14

ways. During the technical preview period, every individual was eligible to access Copilot for free.

During the general access period, individuals could access Copilot by obtaining a free trial for 60

days and later for 30 days. After the trial period, they must pay $10 per month (or $100 dollars per

year) for continued access. For some individuals, GitHub provides free access after the technical

preview period. Students can obtain Copilot and pay $0 per month. Similarly, GitHub rewards

top OSS developers with free Copilot access based on an internal eligibility ranking. Finally, in-

dividuals can obtain access through their company starting on February 14, 2023. Companies can

sponsor their employee access to Copilot with the employer paying $19 per employee for each

month.

In this study, we leverage the internal eligibility ranking from GitHub which determines that

a sub-population of top developers receive complimentary Copilot access which we leverage as a

natural experiment. To determine a user’s eligiblity for the program, GitHub creates an internal

ranking for OSS repositories based on criteria that remains unknown to the wider public. Any

developer who has been added as a “collaborator” to a repository is considered a maintainer and

is therefore potentially eligible for free access to GitHub Copilot.10 Developers for projects below

a given threshold of the eligibility ranking are granted complimentary Copilot access for one year.

After one year, GitHub verifies the user’s current eligibility through the top developer program and

complimentary access continues if the developer’s repository remains below the threshold.

A key feature of this program is that the exact ranking system is largely unknown to develop-

ers. Public discussions between users suggests there exists a considerable degree of uncertainty

over what makes a given project eligible.11 As GitHub does not reveal the exact composition and

ingredients of the ranking, nor the eligibility threshold the developers can only guess. This vague-

ness in the composition and ingredients of the eligibility ranking lends additional credibility to our

identification strategy as it is virtually impossible to manipulate the ranking as a developer. More-

over, GitHub does not engage in any additional messaging to communicate the eligibility status to

10The nominal owner of the repository, i.e. the GitHub user who created the repository, can add collaborators in the
repository’s settings page.

11See YCombinator and GitHub discussions.

15

developers. Each developer has to check whether they are eligible to access the AI for free when

they apply for Copilot.

3 Data

We use a mixture of openly available and proprietary data from GitHub to understand the

effects of the Copilot AI program for developers. Developer activity is publicly available while

Copilot AI usage and eligibility for complimentary access are proprietary to GitHub. In collabora-

tion with GitHub, we link the public platform activity to Copilot usage for a set of pseudonymized

developers to form a panel of developer-week observations. From the granular activities data

observed on the GitHub platform, we develop a set of two broad classifications of developer activ-

ities that are essential to collaborative software development. The core of our analysis considers

the extent to which developers engage in (1) coding and (2) project management activities. Precise

definitions for each classification can be found in Appendix B. We detail these categories in turn

in the following sections.

First, coding includes developer activities that form the core of OSS contribution: pushing

commits from local repositories to GitHub, forking existing projects to begin new development

directions, and submitting pull requests for other developers to integrate proposed changes. These

activities characterize the more technical process of writing lines of software code. Second, all

remaining activities are considered non-coding activities. We classify an important subset of these

non-coding activities as “project management”, process-oriented community interactions that seek

to progress project development and require a more than purely technical skill set. A critical com-

ponent of OSS collaboration is engagement within the repository’s “issues board”. It is here where

project developers engage with the wider community to assist with software issues, introduce new

ideas, and discuss longer term project objectives.12 Other activities related to project management

include the creation of project boards, which assist developers with project organization and “road-

12For example, developers can open issues themselves, assign other developers to investigate certain issues, give issues
labels for organization, and close the issue itself, thereby signaling that it is no longer an outstanding concern.

16

mapping”, and systematically reviewing the proposed contributions stemming from pull requests.

Finally, we aggregate all items to obtain a measure of the total activities for each developer on the

platform.

Table A1 shows univariate statistics for the Copilot AI treatment, the work activities and the

ranking for the first year.13 We use a sample of active top developers who are collaborators on a

repository that receives an eligibility ranking during the general access period. To leverage mean-

ingful variation for the sub-sample of developers who received access for the first time, we exclude

any developers who had Copilot experience during the technical preview. All individuals in our

top developer dataset engaged in at least one of the activities mentioned above during our time

window and, thus, are considered active users. This leads to a sample of 50,032 unique “top devel-

opers” — those who are maintainers of OSS projects that are among the most popular and widely

used on GitHub. In this dataset, the average developer uses Copilot for approximately 8 days and

on average 16% of the top developers use Copilot at some point within the general access period

from July 2022 to July 2023. During each week, usage is relatively low, with 3% weekly exposure

and 0.17 days of Copilot adoption per week. For coding and project management, we create a

cumulative share measure defined as the cumulative sum of the activity over the developers overall

total cumulative activity.14 By conditioning on overall individual activity levels, we are better able

to directly compare work allocation across developers and identify any potential reallocation in re-

sponse to AI adoption. The average developer allocates 44% of their engagement towards coding

and, 37% towards project management.15 Finally, our measure for our natural experiment is the

best (minimum) normalized ranking across eligible repositories that developers are connected to.

For example, if an individual is a maintainer for two OSS projects, then the ranking of the lower

ranked repository is used. The ranking distribution is right skewed with an average developer rank

13Descriptive statistics for the subset of top developers within the ranking bandwidth of h ∈ [−100, 100] can be found
in Table A3. More granular statistics on work items are displayed in Table A4.

14Specifically, we use the following cumulative share version:
∑

s≤t Activityit∑
s≤t TotalActivitiesit

. While the theoretical framework
uses absolute measures, we operationalize it via shares due to (1) the sparsity of the measures, (2) to allow for
comparisons of different magnitudes that can be substantially different, and (3) to focus attention on relative task
allocation.

15Table A2 provides the same statistics for a two year time period. AI usage increases substantially across all statistics.

17

around -364 implying that a substantial amount of variation can be found below the normalized

threshold of zero.

4 Methodology: Natural Experiment

If we were to simply investigate the correlation between AI adoption and work patterns, a

natural concern is that more able or motivated workers sort into higher usage of AI. This would

immediately lead to an overestimation of the influence of AI on the nature of distributed work. To

mitigate concerns over selection bias, we instead exploit quasi-random variation in Copilot access

through GitHub’s “top developer” program. To credibly establish a causal effect of Copilot on OSS

activity, we leverage a natural experiment. GitHub awarded free Copilot access to developers of

the most popular public repositories according to an internal ranking. The top developer program

was launched at the beginning of the general access period and was at least partially motivated

by a desire to support critical OSS infrastructure. GitHub determines that a certain number of

repositories are worthy of ranking and those repositories receive a ranking. The exact calculation

of the ranking that determines which repositories receive rankings is not publicly disclosed by

GitHub.

Since the ranking occurs at the project level, we assign each developer a weekly rank from

the projects for which they are designated as collaborators. Specifically, the rank assigned to

each developer is the running best (i.e. cumulative minimum) rank received across all repositories

through the current observation period. Developers who receive a ranking below 0 are eligible

for free access to Copilot while others are not. Developers only become aware of their eligibility

status when applying for Copilot access. Since the developers have to check themselves whether

they are eligible for free Copilot access in contrast to receiving a message from the platform, we

expect the adoption of the AI to be less sharp than it would have been under alternative program

implementations. However, we believe that a regression discontinuity design (RDD) is the best

methodology in this environment allowing us to test not only its underlying assumptions while

18

coming close to a randomized control trial from an internal validity perspective but also being able

to study developers in their natural environment over a long time horizon.

This setting allows us to employ an RDD which in practice can be interpreted as a localized

randomized control trial close to the threshold of AI eligibility. Whether a top developer receives

a ranking just above or just below the threshold can be considered to be as-good-as-random. For-

tunately, the regression discontinuity design allows us to test it’s assumptions. For example, it is

important to have no manipulation across the ranking for the RDD to be valid.16 We have checked

the credibility of this assumption through frequency plots and statistical tests of the running vari-

able as well as covariate checks along the running variable and find evidence that is consistent with

this assumption.17

To estimate the first stage of Copilot adoption, we employ the following model:

Copilotit = α0 + α11Eligibleit + α2Rankingit + α3Eligibleit ×Rankingit + ϵit

where Rankingit is the cumulative minimum Ranking across each eligible repository of a de-

veloper. Eligibleit is defined as 1(Ranking < 0) which is a parameter of interest from which

we identify a change of Copilot usage at the normalized ranking threshold while considering a

bandwidth of h ∈ [−100, 100].

By construction, a change in access and, therefore, ultimately an exogenous change in adoption

of GitHub Copilot is the only policy intervention operating on a developer as one crosses the

ranking threshold of zero. We can therefore interpret any activity change across this threshold as

caused by Copilot through the following intent-to-treat (ITT) estimation:

Activityit = β0 + β11Eligibleit + β2Rankingit + β3Eligibleit ×Rankingit + ϵit

16In other words, neither the developer can manipulate the ranking to receive Copilot access nor should GitHub be
able to manipulate the ranking to the benefit of some developers.

17Figure A2 visually shows a the distribution of the ranking without bunching at the threshold of zero. Table C1 shows
the McCrary test and statistically does not identify any bunching, which adds to the idea that there is no evidence for
a manipulation at the threshold. Visual depictions of covariate smoothness are shown in Figure C1

19

where β1 shows the causal effect of crossing the threshold — and through it, increased Copilot

access — on the work activity of interest.

5 Main Results

5.1 Adoption of the Copilot Generative AI

As a society, we are at the beginning of the S-shaped adoption curve of generative AI overall.

This is not any different for the programming AI Copilot from GitHub. 16 percent of developers

used Copilot at least once (see Table A1). Further, GitHub was not engaging in any kind of adver-

tising informing the top developers about their eligibility for free Copilot access. Top developers

had to visit the GitHub Copilot website and check for themselves whether they were eligible or

not. Fortunately, due to the large scale of our data based on the weekly level, we are able to identify

even small changes.

— Figure 2 about here —

Figure 2 shows how crossing the threshold of zero from left to right alters programming AI

adoption. Developers that are below the threshold of zero (on the left) are eligible to receive

Copilot for free with certainty while those above are not eligible for free through this channel. We

find a significant drop of AI adoption based on the total number of days that AI has been used over

the sample period when we cross the threshold, which implies that developers with free access are

more likely to use the generative AI.18

— Table 1 about here —

Table 1 shows the exact coefficients on generative AI adoption of the top developer population

across those who are eligible to access Copilot for a price of zero dollars (i.e. ranking below zero)

and those who are ineligible to access Copilot through the top developer channel (i.e. ranking

18The first stage is robust to a polynomial of degree two (see Figure C2)

20

above zero). We try a number of alternative measures for Copilot takeup. The first two columns

show estimates from the cross-section and the last two columns show estimates from the panel.

Across each alternative measure, we find an increase of AI adoption for eligible developers near

the rank threshold. For the cross-section, we observe an increase of 6.90 days (321% relative to

the baseline) overall in AI adoption and an increase of 6.14 percentage points (61.2% relative to

the baseline) of developers that ever adopted Copilot. For the panel, we find an increase of 0.12

days per week (223% relative to the baseline) and an exposure increase of 1.8 percentage points

(214% relative to the baseline). Despite not widely advertising Copilot developer access, we find

very strong effects ranging from 61% to 321% adoption, depending on the definition of the first

stage. Independent of the definition of AI adoption, we find that our first stage is relevant with an

F-value substantially beyond the recommended threshold of 10 where the cross-section F-values

range from around 17 to 18 and the panel from 435 to 557.

5.2 Generative AI induces a reallocation towards core work

Having established that GitHub’s top developer program increases Copilot usage for eligible

users, we next begin to explore the causal impact of access to generative AI has on patterns of

distributed work. First, we use the identification strategy established in Section 4 to empirically

evaluate Hypotheses 1a and 1b.

— Table 2 about here —

Table 2 shows the intent-to-treat estimates of the Copilot generative AI on work activities.

The table displays the reduced form effect of AI on activities that relate directly to programmer

work. We find that coding activities as a percentage of all activity increase by 5.4 percentage points

(12.37% relative to the baseline) while project management as a percentage of all activity drops by

10 percentage points (24.93% relative to the baseline). This indicates that overall coding activity

is increasing due to the availability of Copilot.

— Figure 3 about here —

21

Figure 3 shows the same effects graphically. In line with Copilot being a teacher and problem

solver tool well suited to address problems or inquiries that would typically arise in the repository’s

issues page, we observe a substantial drop in the average developer’s relative project management

intensity. It implies that developers are less likely to seek out assistance from other humans. In

this spirit, generative AI is helping the public good of open source programming since developers

have to solve fewer issues and they can focus on their core work - writing software code - which

is what surveys have revealed is how they prefer to spend their time when working on OSS (Nagle

et al., 2020a). Hence, these findings support the prediction of Hypothesis 1a and provide evidence

on Hypothesis 1b that core work and project management are gross substitutes (σ > 1).

We establish robustness for these results in a number of different ways. First, the results are

robust to different bandwidth selections and functional forms as shown in Figure C4. Second, the

results hold under different kernel selections, as shown in Table C2. Third, they are also robust

under optimally chosen bandwidths suggested by Calonico, Cattaneo, and Farrell (2020), which

we present in Table C3. 19 Finally, we show in Table A6 that the reallocation of core work under

Copilot also holds when estimating the intent-to-treat effects using differences-in-differences and

matching identification strategies. In a next step, we establish the generalizability of our results.

We estimate the core results for the subset of developers who are “firm-affiliated” in that their

author commits use a company issued-email address and present the results in Table A7. The

effects of Copilot are qualitatively similar for these two sub-populations, albeit with some minor

differences, suggesting that our core results have some external validity and likely hold within

firms.

— Figure 4 about here —

Figure 4 shows the dynamic impact of a heightened propensity to use Copilot for free in the

two years following general access. We find relatively stable coefficients across two years albeit

with some ramp up and attenuation. In the first quarter, the effects are slightly weaker (in absolute
19The results are further robust to using the absolute measures (see Table C4) and we find that the residual is moving

in the expected direction (see Table C5). We additionally find that the effect for the compliers is qualitatively the
same as the ITT approach but with substantially higher scaled up coefficients in absolute terms.

22

terms) for the effect of Copilot on coding and project management relative to the peak of the third

quarter where effects increases up to 10 percent and 27 percent in absolute terms, respectively.

The impacts of the generative coding tool Copilot continuously attenuates from the fourth quarter

onward and stabilize around 2.5 percent for coding and 8 percent for project management. Hence,

the strongest treatment effects of Copilot arise in the first year which is consistent with the idea that

eligibility of the developers is re-evaluated after year one. Generally speaking, the pattern indicates

that the benefits of accessing Copilot seem to arise very quickly and after some experimentation

with it, the impacts are stable up to approximately two years.

5.3 Generative AI enables more autonomous work

We next consider Hypothesis 2 to address the question of whether generative AI induces work-

ers to work more collaboratively or autonomously. As a start, we can decompose our measures of

coding and project management into more granular activity components, which can in turn be

classified according to the extent to which they are more collaborative or autonomous in nature.

— Figure 6 about here —

Figure 6 Panel A shows that the positive effect of coding is driven mainly by pushes and

some creation of repositories. In contrast, Copilot slightly reduces forking and the creation of

pull requests. Illustrating some background on OSS contribution can help interpret these results.

Following the contribution pattern popularized by the GitHub platform, if a developer wishes to

make a contribution to an OSS project, they first fork the project, make their changes in the forked

copy, and then formally ask the developer of the original project to integrate their changes (e.g. a

“pull request”). This paradigm, while the basis of OSS development, is naturally beset with some

degree of collaboration frictions. In contrast, pushes and the creation of repositories can happen

autonomously by the developer. Together, these coefficient estimates indicate that generative AI

enables developers to bypass collaboration frictions and more easily make unilateral code con-

tributions to projects. This implies that the Copilot AI allows developers to shift their attention

23

towards their core work activity while working more by themselves and less with others.

Figure 6 Panel B shows the decomposed treatment effects of the generative programming AI

on project management. The itemized treatment effects are similarly heterogeneous for project

management relative to coding. While most of the coefficients are negative, a few are zero (or

close to it) and two are even positive. Developers with Copilot access close and merge issues at a

higher rate than those that do not have access to the programming AI. In this process, they require

fewer outside interactions which is in line with a lower rate of requests for reviewers to other

developers or the assignment of issues to others. They also have to review fewer pull requests and

are subscribed to fewer issues which is indicative of those issues having been closed at a faster rate.

Overall, the effect of Copilot on each component of the project management measure is consistent

with workers substituting away from work patterns that rely on others to solve coding issues and

instead utilizing Copilot in place of human capital required in the previous interactions.20

A more direct way of measuring developer engagement in autonomous work is by assessing

how Copilot access influences the size of peer groups a developer opts to work with. We construct

a cumulative mean of the distinct number of collaborators the developer interacts with across all

public repositories over time. We can further disaggregate this measure by granular activity types.

Figure A3 contains intent-to-treat coefficient estimates for the effect of Copilot access on a measure

of distinct collaborators based on each specific activity. We can see that for nearly all activities, in

both core work and project management, that Copilot eligible developers refocus their engagement

towards smaller communities. One can interpret this as a switch towards more autonomous and

less collaborative distributed work patterns.

We also consider a version of the distinct collaborators measure that is aggregated by taking

the maximum number of distinct collaborators across all activity types. The coefficient estimates

for this measure are presented in Table A8 and suggest that Copilot eligibility induces develop-

ers to reduce the number of peers they collaborate with dramatically: eligible developers work in

repositories with 17 fewer peers relative to a baseline of 22 (79.3% lower). This drop off is signif-

20Another robust channel that would strengthen the project management effect if included is ”Commenting”. Devel-
opers with AI access seem to comment substantially less than those without (result upon request).

24

icant and suggests that developers with Copilot access are substituting work in larger repositories

for work in smaller projects. In aggregate, all of this evidence offers support for Hypothesis 2.

5.4 Generative AI encourages experimentation

We are further interested in whether workers are more likely to continue working in estab-

lished projects (“exploit”) or branch out into more experimental work (“explore”) when they are

provided with free access to coding generative AI. Hypothesis 3 predicts they will engage in more

experimentation as the generative AI allows them to explore new areas more.

— Table 3 about here —

Table 3 contains intent-to-treat coefficients for free Copilot eligibility on several measures of

relative exploration or experimentation and exploitation. In Panel A, we investigate how Copilot

influences (1) the developer’s cumulative exposure to repositories that they have never engaged

with before (exploration) and (2) the extent to which the developer revisits repositories they’ve

previously interacted with (exploitation). The estimates are consistent with Hypothesis 3: gen-

erative AI encourages exploration and diminishes exploitation. To put these effects into context,

Copliot eligible developers engage with an additional 15 new repositories on average relative to

ineligible peers. Beyond simply interacting with a new set of repositories, we also find evidence

that generative AI enables developers to gain exposure to a wider range of technologies.

In Panel B, we can see that eligible developers increase their cumulative exposure to new

programming languages by 21.79% relative to the baseline. We also estimate a version of this

cumulative programming language exposure measure weighted by the median salary reported by

software developers who use that language.21 Access to Copilot induces developers to experi-

ment with programming languages that command a 1.41% higher salary relative to a baseline of

$119,371 (an increase of $1,683). Together, these estimates indicate that Copilot eligible devel-

opers are both exploring new languages and choosing languages with greater labor market return.

21We use reported median salaries by programming languages from the Stack Overflow (2023) Developer Survey.

25

Overall, these results suggests that Copilot eligibility increases exploratory and experimental work

activities undertaken by project developers across several dimensions, while it reduces tendencies

to exploit established projects, and establish credible evidence for Hypothesis 3.

5.5 Generative AI responses are stronger for lower ability workers

Finally, we want to understand the extent to which a worker’s ability level can moderate the

impact of generative AI adoption. By further disaggregating our sample of developers, we can

assess the potential for AI tools to reduce inequality in a setting that is overly dependent on a

small number of highly skilled individuals (Hoffmann, Nagle, and Zhou, 2024) and explore the

implications for improving the health of critical digital infrastructure (Lifshitz-Assaf and Nagle,

2021).

— Figure 5 about here —

Figure 5 shows the AI treatment effects across median splits for a number of alternative proxies

for ability.22 Our set of ability proxies include the developer’s maximum centrality across ranked

repositories, the number of GitHub platform achievements, their follower count, and their tenure23

on GitHub. Summary statistics for these proxies and a description of how they are measured are

contained in Table A5. This diverse set of proxies was chosen to capture developer characteristics

such as project workload incidence, diversity of contribution, popular interest from peers, and

experience. For each of these measures, we find that individuals below the median (low ability)

exhibit larger increases of coding activities and larger reductions in project management activities,

as a percentage of all activities, than those above the median (high ability). It indicates that the low

ability workers benefit more from the Copilot programming AI and therefore AI has the potential

to reduce inequality of contributions for OSS.

22Table 4 contains the estimates plotted in Figure 5 as well as relative treatment effect and sample size comparisons.
23GitHub achievements are badges that appear on a GitHub user’s public profile upon completion of some kind of

event, such as successfully merging their first PR, creating a popular repository, or donating to a repository via
GitHub Sponsors. See https://githubachievements.com/ for more details. Tenure, in particular, has
been used as proxy for ability in similar settings (Bonabi et al., 2024).

26

6 Discussion

This research has a number of implications related to the impact of generative AI for working

individuals, managers, and society more broadly. The main findings of this paper imply that hands-

on managers may be aided by generative artificial intelligence and that this novel technology has

the potential to flatten organizational hierarchies. It not only shows that generative AI may allow

talented workers to refocus their attention to core work that is more aligned with their preferences

but also that this shift could lead to more exploratory work and innovation. While we have not

shown it directly in this paper, one may speculate that managers who no longer code after rising

up in the hierarchy may be able to now more easily get back into the core work, which could allow

them to connect more directly with their team.

Our work has further implications related to technology adoption for distributed organiza-

tions, as generative AI may bring about a more streamlined production process. However, we

argue that this study goes beyond distributed organizations and also speaks to technology within

non-distributed organizations and worker decisions within the information economy more broadly.

Finally, our salary-weighted language exposure measure allows for a back-of-the-envelope calcu-

lation of the monetary impact of Copilot if one extends it to the set of all top developers. The

language-specific labor market potential is around $1,683 per year. When developers pay a price

for Copilot of $120 per year, we arrive at an average net potential of $1,563. Extrapolating this

average effect to the set of all 300,000 developers suggests that GitHub Copilot can improve the

aggregate value of labor market potential by roughly $468 million per year. While this measure is

purely a back-of-the-envelope without taking into account general equilibrium effects, we believe

that this estimate substantially underestimates the true value since it does not account for any value

derived from improvements that are not due to language-specific experimentation or due to the

productivity benefits of generative AI.

Our empirical setting allows us to push the boundaries of existing knowledge about the impact

of AI on the nature of work. The primary benefit of this natural experiment is that we are able to

observe activities that are driven by AI for a longer period of time than most prior studies (two

27

years) while still using very granular-level work activity data. On the other hand, a limitation of

this study is that we are not observing the exact code that individuals are writing and we are not

precisely observing how individuals are using Copilot. While randomized controlled trials can

focus on this aspect, they often have to restrict themselves to a small set of individuals. In contrast,

we are able to study the long-run effects of AI on many daily work activities for a large group of

programmers that are extremely important linchpin contributors to the public good open source

software.

Another limitation of this study is that we are only observing contributions to public reposi-

tories. Much of the activity with AI may happen in private repositories and as such, we are likely

substantially underestimating the impact that generative AI has on coding and project management

behavior. Based on our data, we find that 45.51% of Copilot usage happens in weeks where no

public (OSS) work activity is observed and GitHub has confirmed that the Copilot activity must

therefore be related to private repository activity by the individuals. Further, there is likely an even

higher fraction of private activity since this activity - while not measurable - is also likely occur-

ring during weeks where public activities are also occurring. As such, we expect that around 50%

of the activity of highly active programmers happens on private and 50% on public repositories.

Hence, a reasonable estimate for the overall private-public effort could be doubling our estimates

conditional on private behavior being affected in similar ways to publicly observable behavior.

A further interesting feature of the open source software platform is that private repositories can

become public over time, which implies that not only will learning from private repositories spill

over to public ones due to developers programming with the AI in public repositories but also AI

generated code may appear at an increased rate over time in the public sphere.

7 Conclusion

This study seeks to shine light on the importance of AI, and in particular generative AI and it’s

consequences on distributed work. Going beyond the first-level understanding of whether or not it

28

increases productivity, we dig deeper to understand how it changes the nature of work processes of

adopters. We find that top developers of open source software are engaging more in their core work

of coding and are engaging less in their non-core work of project management. Both of these main

effects are driven by two underlying mechanisms — an increase in autonomous behavior (and a

related decrease in collaborative behavior) and an increase in exploration behavior (and a related

decrease in exploitation behavior). In particular, the reduction of the need to collaborate with other

humans, leads to humans circumventing collaborative frictions and transaction costs that would

otherwise occur during their work. We further find that the programming generative AI Copilot

shifts the task allocation of developers with lower ability more than those with higher ability.

Overall, our results are among the first to illuminate the deeper level changes in a decentralized

work process instigated by AI over a long time period with very granular level information using a

natural experiment. Furthermore, our study yields early insights into how generative AI shapes the

voluntary private provision of critical digital public goods infrastructure and how it ameliorates the

linchpin problem. Indeed the scope for positive externalities inherent to the public goods setting

suggests the efficiency gains that arise from introducing generative AI to OSS production process

can generate far-reaching spillover benefits to downstream users. We believe our study will help

managers and policy makers better understand the nuances of this nascent yet transformational

technology.

29

References
Acemoglu, Daron. 2003. “Labor-and capital-augmenting technical change.” Journal of the Euro-

pean Economic Association 1 (1):1–37.

Acemoglu, Daron, David Autor, Jonathon Hazell, and Pascual Restrepo. 2022. “Artificial intelli-
gence and jobs: Evidence from online vacancies.” Journal of Labor Economics 40 (S1):S293–
S340.

Acemoglu, Daron, Fredric Kong, and Pascual Restrepo. 2024. “Tasks At Work: Comparative Ad-
vantage, Technology and Labor Demand.” Tech. rep., National Bureau of Economic Research.

Acemoglu, Daron and Pascual Restrepo. 2018. “Artificial intelligence, automation, and work.” In
The economics of artificial intelligence: An agenda. University of Chicago Press, 197–236.

Agrawal, Ajay, Joshua Gans, and Avi Goldfarb. 2019. “Economic policy for artificial intelligence.”
Innovation policy and the economy 19 (1):139–159.

Altman, Elizabeth J, Frank Nagle, and Michael Tushman. 2015. Innovating without information
constraints: Organizations, communities, and innovation when information costs approach zero.
Oxford University Press New York.

Aral, Sinan and Marshall Van Alstyne. 2011. “The diversity-bandwidth trade-off.” American
Journal of Sociology 117 (1):90–171.

Autor, David. 2024. “Applying AI to rebuild middle class jobs.” Tech. rep., National Bureau of
Economic Research.

Autor, David H, Frank Levy, and Richard J Murnane. 2003. “The skill content of recent technologi-
cal change: An empirical exploration.” The Quarterly Journal of Economics 118 (4):1279–1333.

Ballester, Coralio, Antoni Calvó-Armengol, and Yves Zenou. 2006. “Who’s who in networks.
Wanted: The key player.” Econometrica 74 (5):1403–1417.

Benner, Mary J and Michael L Tushman. 2003. “Exploitation, exploration, and process manage-
ment: The productivity dilemma revisited.” Academy of Management Review 28 (2):238–256.

Blind, Knut, Mirko Böhm, Paula Grzegorzewska, Andrew Katz, Sachiko Muto, Sivan Pätsch, and
Torben Schubert. 2021. “The impact of Open Source Software and Hardware on technolog-
ical independence, competitiveness and innovation in the EU economy.” Final Study Report.
European Commission, Brussels, doi 10:430161.

Bloom, Nicholas, Luis Garicano, Raffaella Sadun, and John Van Reenen. 2014. “The distinct
effects of information technology and communication technology on firm organization.” Man-
agement Science 60 (12):2859–2885.

Bonabi, Sardar Fatooreh, Sarah Bana, Vijay Gurbaxani, and Tingting Nian. 2024. “Navigating
the Generative AI Blackout: The Role of Generative AI in Software Development Industry.”
Working paper.

30

Boysel, Sam, Manuel Hoffmann, and Frank Nagle. 2024. “Labor Competition and Open Innova-
tion.” Working Paper .

Bresnahan, Timothy F, Erik Brynjolfsson, and Lorin M Hitt. 2002. “Information technology, work-
place organization, and the demand for skilled labor: Firm-level evidence.” The Quarterly Jour-
nal of Economics 117 (1):339–376.

Brynjolfsson, Erik, Danielle Li, and Lindsey R Raymond. 2023. “Generative AI at work.” Tech.
rep., National Bureau of Economic Research.

Brynjolfsson, Erik, Daniel Rock, and Chad Syverson. 2018. “Artificial intelligence and the modern
productivity paradox: A clash of expectations and statistics.” In The economics of artificial
intelligence: An agenda. University of Chicago Press, 23–57.

Bughin, Jaques and J Manyika. 2018. “The promise and challenge of the age of artificial in-
telligence.” McKinsey Global Institute, May. https://www. mckinsey. it/idee/the-promise-and-
challenge-of-the-age-ofartificial-intelligence 30 (10).

Calonico, Sebastian, Matias D Cattaneo, and Max H Farrell. 2020. “Optimal bandwidth choice for
robust bias-corrected inference in regression discontinuity designs.” The Econometrics Journal
23 (2):192–210.

Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman et al. 2021. “Evaluating
large language models trained on code.” arXiv preprint arXiv:2107.03374 .

Corrado, Carol, Jonathan Haskel, and Cecilia Jona-Lasinio. 2021. “Artificial intelligence and
productivity: an intangible assets approach.” Oxford Review of Economic Policy 37 (3):435–
458.

Crafts, Nicholas. 2021. “Artificial intelligence as a general-purpose technology: an historical
perspective.” Oxford Review of Economic Policy 37 (3).

Crowston, Kevin, Kangning Wei, James Howison, and Andrea Wiggins. 2008. “Free/Libre open-
source software development: What we know and what we do not know.” ACM Computing
Surveys (CSUR) 44 (2):1–35.

Cui, Zheyuan Kevin, Mert Demirer, Sonia Jaffe, Leon Musolff, Sida Peng, and Tobias Salz. 2024.
“The Effects of Generative AI on High Skilled Work: Evidence from Three Field Experiments
with Software Developers.” Available at SSRN .

Czarnitzki, Dirk, Gastón P Fernández, and Christian Rammer. 2023. “Artificial intelligence and
firm-level productivity.” Journal of Economic Behavior & Organization 211:188–205.

Dell’Acqua, Fabrizio, Edward McFowland, Ethan R Mollick, Hila Lifshitz-Assaf, Katherine Kel-
logg, Saran Rajendran, Lisa Krayer, François Candelon, and Karim R Lakhani. 2023. “Nav-
igating the jagged technological frontier: Field experimental evidence of the effects of AI on
knowledge worker productivity and quality.” Harvard Business School Technology & Opera-
tions Mgt. Unit Working Paper 24 (013).

31

Dohmke, Thomas, Marco Iansiti, and Greg Richards. 2023. “Sea Change in Software Develop-
ment: Economic and Productivity Analysis of the AI-Powered Developer Lifecycle.” arXiv
preprint arXiv:2306.15033 .

Eghbal, Nadia. 2020. Working in public: the making and maintenance of open source software.
Stripe Press.

Eloundou, Tyna, Sam Manning, Pamela Mishkin, and Daniel Rock. 2024. “GPTs are GPTs: Labor
market impact potential of LLMs.” Science 384 (6702):1306–1308.

Faraj, Samer, Sirkka L Jarvenpaa, and Ann Majchrzak. 2011. “Knowledge collaboration in online
communities.” Organization Science 22 (5):1224–1239.

Finkelstein, Sydney and Donald C Hambrick. 1990. “Top-management-team tenure and orga-
nizational outcomes: The moderating role of managerial discretion.” Administrative science
quarterly :484–503.

Fügener, Andreas, Jörn Grahl, Alok Gupta, and Wolfgang Ketter. 2022. “Cognitive challenges
in human–artificial intelligence collaboration: Investigating the path toward productive delega-
tion.” Information Systems Research 33 (2):678–696.

Furman, Jason and Robert Seamans. 2019. “AI and the Economy.” Innovation policy and the
economy 19 (1):161–191.

Geerling, Jeff. 2022. “The burden of an Open Source maintainer.” URL https://www.
jeffgeerling.com/blog/2022/burden-open-source-maintainer.

Geiger, R Stuart, Dorothy Howard, and Lilly Irani. 2021. “The labor of maintaining and scaling
free and open-source software projects.” Proceedings of the ACM on human-computer interac-
tion 5 (CSCW1):1–28.

Godin, Seth. 2010. “Linchpin: Are You Indispensable?” Teacher Librarian 37 (4):77.

Goldfarb, Avi, Bledi Taska, and Florenta Teodoridis. 2023. “Could machine learning be a gen-
eral purpose technology? a comparison of emerging technologies using data from online job
postings.” Research Policy 52 (1):104653.

Hambrick, DC and S Finkelstein. 1987. “Managerial discretion: A bridge between polar views of
organizational outcomes.” Research in Organizational Behavior 9:369–406.

Hoffmann, Manuel, Frank Nagle, and Yanuo Zhou. 2024. “The Value of Open Source Software.”
Harvard Business School Strategy Unit Working Paper 24 (038).

Lerner, Josh and Jean Tirole. 2002. “Some simple economics of open source.” The Journal of
Industrial Economics 50 (2):197–234.

Levinthal, Daniel A and James G March. 1993. “The myopia of learning.” Strategic Management
Journal 14 (S2):95–112.

32

Lifshitz-Assaf, H and F Nagle. 2021. “The digital economy runs on open source. Here’s how to
protect it.” Harvard Business Review :1–7.

March, James G. 1991. “Exploration and exploitation in organizational learning.” Organization
Science 2 (1):71–87.

McCrary, Justin. 2008. “Manipulation of the running variable in the regression discontinuity de-
sign: A density test.” Journal of econometrics 142 (2):698–714.

Mintzberg, Henry. 1994. “Rounding out the manager’s job.” Sloan Management Review 36:11–11.

Moon, Jae Yun and Lee Sproull. 2002. “Essence of Distributed Work: The Case of the Linux
Kernel.” In Distributed Work. The MIT Press, 21. URL https://doi.org/10.7551/
mitpress/2464.003.0023.

Nagle, Frank. 2018. “Learning by contributing: Gaining competitive advantage through contribu-
tion to crowdsourced public goods.” Organization Science 29 (4):569–587.

———. 2019. “Open source software and firm productivity.” Management Science 65 (3):1191–
1215.

Nagle, Frank, David A Wheeler, H Lifshitz-Assaf, H Ham, and J Hoffman. 2020a. “Report on the
2020 foss contributor survey.” The Linux Foundation Core Infrastructure Initiative .

Nagle, Frank, Jessica Wilkerson, James Dana, and Jennifer L Hoffman. 2020b. “Vulnerabilities in
the Core: Preliminary Report and Census II of Open Source Software.” The Linux Foundation
& The Laboratory for Innovation Science at Harvard .

Noy, Shakked and Whitney Zhang. 2023. “Experimental evidence on the productivity effects of
generative artificial intelligence.” Available at SSRN 4375283 .

Orlikowski, Wanda J. 2007. “Sociomaterial practices: Exploring technology at work.” Organiza-
tion Studies 28 (9):1435–1448.

Peng, Sida, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. “The impact of ai on
developer productivity: Evidence from github copilot.” arXiv preprint arXiv:2302.06590 .

Raj, Manav and Robert Seamans. 2018. “Artificial intelligence, labor, productivity, and the need for
firm-level data.” In The economics of artificial intelligence: An agenda. University of Chicago
Press, 553–565.

Raman, Naveen, Minxuan Cao, Yulia Tsvetkov, Christian Kästner, and Bogdan Vasilescu. 2020.
“Stress and burnout in open source: Toward finding, understanding, and mitigating unhealthy
interactions.” In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: New Ideas and Emerging Results. 57–60.

Ransbotham, Sam, David Kiron, Philipp Gerbert, and Martin Reeves. 2017. “Reshaping business
with artificial intelligence: Closing the gap between ambition and action.” MIT sloan manage-
ment review 59 (1).

33

Robbins, Carol, Gizam Korkmaz, Ledia Guci, J Bayoán Santiago Calderón, and Brandon Kramer.
2021. “A First Look at Open-Source Software Investment in the United States and in Other
Countries, 2009-2019.” In Paper presented the IARIW-ESCoE Conference, Measuring Intangi-
ble Capitals and their Contribution to Growth (November, RSA House, London). 1–30.

Sachs, Goldman. 2023. “Generative AI could raise global GDP by 7%.” GoldmanSachs.com .

Stack Overflow. 2023. “Stack Overflow Developer Survey 2023.” URL https://survey.
stackoverflow.co/2023.

Synopsys. 2023. “023 OSSRA: A deep dive into open source trends.” Synopsys, May 1 2023.
https://www.synopsys.com/blogs/software-security/open-source-trends-ossra-report/ 05 (1).

Tamayo, Jorge, L Doumi, S Goel, O Kovács-Ondrejkovic, and R Sadun. 2023. “Reskilling in the
age of AI.” Harvard Business Review 21.

Teodoridis, Florenta. 2018. “Understanding team knowledge production: The interrelated roles of
technology and expertise.” Management Science 64 (8):3625–3648.

U.S. Department of Labor. 2024. “Artificial Intelligence and Worker Well-being: Principles for De-
velopers and Employers.” URL https://www.dol.gov/general/AI-Principles.

Wladawsky-Berger, Irving. 2023. “Why Human Input Matters to Generative AI.” MIT Initative on
the Digital Economy .

Wright, Nataliya Langburd, Frank Nagle, and Shane Greenstein. 2023. “Open source software and
global entrepreneurship.” Research Policy 52 (9):104846.

Yeverechyahu, Doron, Raveesh Mayya, and Gal Oestreicher-Singer. 2024. “The Impact of Large
Language Models on Open-source Innovation: Evidence from GitHub Copilot.” arXiv preprint
arXiv:2409.08379 .

Zammuto, Raymond F, Terri L Griffith, Ann Majchrzak, Deborah J Dougherty, and Samer Faraj.
2007. “Information technology and the changing fabric of organization.” Organization Science
18 (5):749–762.

34

Figures and Tables

Figure 1: GITHUB COPILOT AI DEPLOYMENT TIMELINE

Note: The figure shows the timeline for the introduction of the generative AI GitHub
Copilot.

35

Figure 2: COPILOT AI ADOPTION ACROSS RANKS

100 75 50 25 0 25 50 75 100
Maintainer's Best Rank (overall minimum)

0

2

4

6

8

10

12

14

Co
pi

lo
t D

ay
s (

to
ta

l)

Estimate:
 6.8955
(1.5736)

Free Access to AI
Other

Note: The figure shows the total number of days the Copilot generative AI was used across the overall nor-
malized minimum ranking on GitHub using a linear fit on either side of the threshold within the bandwidth
of h ∈ [−100, 100]. Developers with rankings below zero receive free access to the AI through the top
developer channel while those above do not. Time frame: July, 2022 to July 2023. Robust standard errors
are in parentheses.

36

Figure 3: INTENT-TO-TREAT AVERAGE EFFECTS OF COPILOT AI

Coding

100 75 50 25 0 25 50 75 100
Maintainers Rank

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Co
di

ng

Estimate:
 0.0537
(0.002)

Free Access to AI
Other

Project Management

100 75 50 25 0 25 50 75 100
Maintainers Rank

0.25

0.30

0.35

0.40

0.45

0.50

Pr
oj

ec
t M

an
ag

em
en

t

Estimate:
 -0.1002
(0.0017)

Free Access to AI
Other

Note: The figure shows the intent-to-treat (ITT) effect of the GitHub Copilot generative AI on the outcomes
of Coding and Project Management using the overall normalized minimum ranking on GitHub via a linear
fit on either side of the threshold within the bandwidth of h ∈ [−100, 100]. Developers with rankings below
zero receive free access to the AI through the top developer channel while those above do not. Time frame:
July, 2022 to July, 2023. Robust standard errors are in parentheses.

37

Figure 4: INTENT-TO-TREAT EFFECTS OF COPILOT OVER TWO YEARS

Panel A: Coding

1 2 3 4 5 6 7 8
Quarters since GA

30%

20%

10%

0%

10%

20%

30%

%
 re

la
tiv

e
to

 b
as

el
in

e

Panel B: Project Management

1 2 3 4 5 6 7 8
Quarters since GA

30%

20%

10%

0%

10%

20%

30%

%
 re

la
tiv

e
to

 b
as

el
in

e

Note: The figures plots the relative treatment effects (in percentage terms relative to the baseline) derived
from the intent-to-treat (ITT) coefficient estimates and confidence intervals for top developers being ranked
below zero relative to above a zero ranking on the outcomes of coding and project management by pooling
observations in quarters since the general access (GA) period. Time frame: July, 2022 to July, 2024. The
confidence intervals are based on robust standard errors.

38

Figure 5: INTENT-TO-TREAT EFFECTS OF COPILOT ACROSS ABILITY

Panel A: Coding

0.02 0.04 0.06 0.08 0.10 0.12
Coding

Max Centrality

Achievements

Followers

Tenure

Ab
ilit

y
Pr

ox
y

Low Ability High Ability

Panel B: Project Management

0.16 0.14 0.12 0.10 0.08 0.06
Project Management

Max Centrality

Achievements

Followers

Tenure

Ab
ilit

y
Pr

ox
y

Low Ability High Ability

Note: The figures show intent-to-treat (ITT) coefficient estimates and confidence intervals on the outcomes
of coding and project management for top developers being ranked below zero relative to above a zero
ranking across low and high ability developers. Ability is measured based on ability proxies of developer
centrality, follower count, achievements, and tenure split by the median up to the the general access period.
Low ability individuals are below the median for each ability proxy while high ability are above the median.
Time frame: July, 2022 to July, 2023. The confidence intervals are based on robust standard errors.

39

Figure 6: GRANULAR INTENT-TO-TREAT EFFECTS OF COPILOT

Panel A: Coding

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Coefficient

Create Pull Request

Fork Repo

Create Repo

Push Commit

Panel B: Project Management

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Coefficient

Issue: Request Review
Issue: Subscribe

Review Pull Request
Issue: Assigned

Issue: Label
Issue: Reopen

Create Project Board
Issue: Delete Comment

Issue: Create
Issue: Merged
Issue: Closed

Note: The figures show the intent-to-treat (ITT) coefficient estimates on the granular outcomes of coding
and project Management since the general access period. Time frame: July, 2022 to July, 2023. Horizontal
error bars represent 95% condfidence intervals for the coefficient estimate and are based on robust standard
errors.

40

Table 1: AI ADOPTION ACROSS DEVELOPER RANKINGS

Cross Section Panel

Total Days Ever Use Days/Week Exposure

1(Eligible)
6.896∗∗∗ 0.061∗∗ 0.125∗∗∗ 0.018∗∗∗

(1.574) (0.023) (0.008) (0.001)

Baseline
2.146∗∗∗ 0.100∗∗∗ 0.056∗∗∗ 0.008∗∗∗

(0.593) (0.013) (0.003) (0.000)

Rel. TE (%) 321.3 61.0 223.2 214.3
F 18.0 17.8 435.7 557.5
N 4,268 4,268 215,169 215,169

a Note: This table shows the first stage uptake of the generative AI tool Copilot
for top developers that are eligible based on the internal GitHub ranking relative
to those who are not eligible through this pathway using a bandwidth of ranks
h ∈ [−100, 100]. The first two columns show cross-sectional estimates on the
total days of AI adoption and whether a developer ever adopted the AI. The last
two columns show the panel estimates of the days per week of AI adoption and
exposure shares, i.e. the cumulative days of AI adoption over the cumulative
total days from the general access period onward. Time frame: July, 2022 to
July, 2023. Robust standard errors are in parentheses: ∗∗∗ p < 0.001; ∗∗ p <
0.01; ∗ p < 0.05

41

Table 2: INTENT-TO-TREAT EFFECT OF COPILOT AI ON WORK ACTIVITIES

Coding Project Management

1(Eligible)
0.054∗∗∗ 0.041∗∗∗ −0.100∗∗∗ −0.089∗∗∗

(0.002) (0.002) (0.002) (0.002)

Baseline
0.434∗∗∗ 0.457∗∗∗ 0.402∗∗∗ 0.443∗∗∗

(0.001) (0.001) (0.001) (0.001)

Rel. TE (%) 12.4 9.0 −24.9 −20.1
N 269,546 248,032 269,546 248,032
Controls ✓ ✓

Note: This table shows the coefficient estimates from the intent-to-
treat specification across each activity classification for top developers
that are eligible based on the internal GitHub ranking relative to those
who are not eligible through this pathway using a bandwidth of ranks
h ∈ [−100, 100]. Covariate controls include the developer’s GitHub ac-
count age in days, number of GitHub achievements, number of followers,
and a measure of their share of repository activity (i.e. centrality). Time
frame: July, 2022 to July, 2023. Robust standard errors are in parentheses:
∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

42

Table 3: INTENT-TO-TREAT EFFECT OF COPILOT ON EXPERIMENTATION

Panel A:

New Repositories Old Repositories

1(Eligible)
0.484∗∗∗ 0.367∗∗∗ −0.087∗∗∗ −0.114∗∗∗

(0.010) (0.010) (0.011) (0.011)

Baseline
3.097∗∗∗ 2.272∗∗∗ 4.289∗∗∗ 3.645∗∗∗

(0.007) (0.007) (0.007) (0.008)

TE (%) 62.3 44.3 −9.1 −12.0
N 269,546 248,032 269,546 248,032
Controls ✓ ✓

Panel B:

Language Exposure Salary Exposure

1(Eligible)
1.753∗∗∗ 1.152∗∗∗ 0.014∗∗∗ 0.013∗∗∗

(0.075) (0.076) (0.000) (0.000)

Baseline
9.245∗∗∗ 5.127∗∗∗ 11.691∗∗∗ 11.685∗∗∗

(0.047) (0.054) (0.000) (0.000)

TE (%) 19.0 22.5 1.4 1.3
N 181,798 170,411 181,798 170,411
Controls ✓ ✓

a Note: This table shows the coefficient estimates from the intent-to-treat specification
for several measures of experimentation for top developers within the bandwidth of ranks
h ∈ [−100, 100]. Panel A compares the effect of Copilot AI on a measure of exploration,
the developers (log) cumulative exposure to new repositories, against its effect on a mea-
sure of exploitation, the developer’s (log) cumulative count of repositories that they have
previously interacted with. In Panel B, we present the ITT estimates for two additional
measures of developer experimentation, the cumulative number of distinct programming
languages the developer has been exposed to and an alternative version weighted by
the salary language practitioners are typically paid. Salary exposure is a version of the
language exposure measure where each distinct language is weighted by the median re-
ported salary reported by software engineers who use the language (Stack Overflow De-
veloper Survey 2023). We take the natural log of the resulting quantity plus one. Since
the specifications for New Repositories, Old Repositories, and Salary Exposure are log-
linear, we interpret the coefficients directly to derive a treatment effect in percentage
terms. For Language Exposure, we present the treatment effect relative to the baseline.
Robust standard errors are in parentheses: ∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

43

Table 4: INTENT-TO-TREAT EFFECTS OF COPILOT ON WORK ACTIVITIES BY ABILITY

Panel A:

Coding Centrality Achievements Followers Tenure

Low High Low High Low High Low High

1(Eligible)
0.061∗∗∗ 0.021∗∗∗ 0.082∗∗∗ 0.046∗∗∗ 0.098∗∗∗ 0.043∗∗∗ 0.112∗∗∗ 0.025∗∗∗

(0.003) (0.003) (0.003) (0.002) (0.003) (0.002) (0.003) (0.003)

Baseline
0.431∗∗∗ 0.443∗∗∗ 0.427∗∗∗ 0.438∗∗∗ 0.422∗∗∗ 0.435∗∗∗ 0.421∗∗∗ 0.443∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Rel. TE (%) 14.2 4.7 19.2 10.6 23.3 9.8 26.6 5.7
N 124,077 123,977 147,814 121,732 136,011 133,535 134,999 134,496

Panel B:

Project Management Centrality Achievements Followers Tenure

Low High Low High Low High Low High

1(Eligible)
−0.142∗∗∗ −0.054∗∗∗ −0.149∗∗∗ −0.084∗∗∗ −0.154∗∗∗ −0.061∗∗∗ −0.160∗∗∗ −0.067∗∗∗

(0.003) (0.002) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002)

Baseline
0.432∗∗∗ 0.348∗∗∗ 0.417∗∗∗ 0.375∗∗∗ 0.448∗∗∗ 0.336∗∗∗ 0.434∗∗∗ 0.355∗∗∗

(0.002) (0.001) (0.002) (0.001) (0.002) (0.001) (0.002) (0.001)

Rel. TE (%) −33.0 −15.4 −35.8 −22.5 −34.5 −18.3 −36.9 −19.0
N 124,077 123,977 147,814 121,732 136,011 133,535 134,999 134,496

Note: This table shows the coefficient estimates from the intent-to-treat specification across each activity classification
for top developers that are eligible based on the internal GitHub ranking relative to those who are not eligible through
this pathway using a bandwidth of ranks h ∈ [−100, 100]. The core sample is split along the median to create high
and low ability subsamples for four different proxies: a measure of their share of repository activity (i.e. centrality),
the developer’s number of GitHub achievements, number of followers, and GitHub account age (i.e. tenure). Time
frame: July, 2022 to July, 2023. Robust standard errors are in parentheses: ∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

44

Appendices

Appendix A Additional Tables and Figures

Figure A1: GITHUB COPILOT: ARTIFICIAL INTELLIGENCE IN ACTION

Panel A: User Input

Panel B: Code Completion

Note: The figure shows a function generated by GitHub Copilot. The user began writ-
ing a function (Panel A) and Copilot suggested the rest based on this initial suggestion
(Panel B).
Source: GitHub 2022

45

Figure A2: DISTRIBUTION OF MINIMUM RANKINGS

100 50 0 50 100
0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

Note: The figure shows the distribution of the minimum rankings for the top developer
based on the internal ranking system from GitHub. The dashed line is at the eligibility
threshold of the rank zero.

46

Figure A3: GRANULAR INTENT-TO-TREAT EFFECTS ON THE NUMBER OF DISTINCT

COLLABORATORS ACROSS EACH ACTIVITY TYPE

Panel A: Coding

30 25 20 15 10 5 0 5 10
Coefficient

Fork Repo

Create Pull Request

Push Commit

Create Repo

Panel B: Project Management

30 25 20 15 10 5 0 5 10
Coefficient

Issue: Subscribe
Issue: Assigned

Review Pull Request
Issue: Request Review

Issue: Closed
Issue: Create

Issue: Reopen
Issue: Label

Issue: Merged
Issue: Delete Comment

Create Project Board

Note: The figure shows intent-to-treat coefficient estimates where the outcome variable is the cumulative
mean of distinct collaborators a developer interacts with in public repositories. This measure is calculated
for each granular activity. Panel A contains activities related to coding and Panel B contains activities related
to project management. The estimates uses developers within the ranking bandwidth of h ∈ [−100, 100].
Developers with rankings below zero receive free access to the AI through the top developer channel while
those above do not. Time frame: July, 2022 to July, 2023. Horizontal error bars represent 95% condfidence
intervals for the coefficient estimate and are based on robust standard errors.

47

Table A1: DESCRIPTIVE STATISTICS OF TOP MAINTAINERS FOR 1 YEAR

Mean SD Min Max

AI Treatment

AI Total Days 8.12 29.17 0 349
AI Ever Used 0.16 0.37 0 1
AI Exposure Share 0.03 0.11 0 1
AI Days Used / Week 0.17 0.87 0 7

Work Activities

Coding 0.44 0.22 0 1
Project Management 0.37 0.20 0 1
All Activities 25.79 267.70 0 8, 665

Ranking

Normalized Ranking −363.94 560.98 −999 1000

Note: The table shows univariate descriptive statistics for top developers over
one year with the arithmetic mean (mean) in the first column, followed by the
standard deviation (SD), the lowest value of a variable (min), the highest value
of a variable (max) and the number of observations (N). Our full balanced panel
contains 2,422,916 observations for 50,032 developers within a time period
from July 2022 - July 2023.

48

Table A2: DESCRIPTIVE STATISTICS OF TOP MAINTAINERS FOR 2 YEARS

Mean SD Min Max

AI Treatment

AI Total Days 27.66 76.52 0 717
AI Ever Used 0.24 0.43 0 1
AI Exposure Share 0.05 0.14 0 1
AI Days Used / Week 0.29 1.12 0 7

Work Activities

Coding 0.45 0.22 0 1
Project Management 0.36 0.19 0 1
All Activities 23.74 253.10 0 198, 498

Ranking

Normalized Ranking −368.22 558.72 −999 1000

Note: The table shows univariate descriptive statistics for top developers over two
years with the arithmetic mean (mean) in the first column, followed by the standard
deviation (SD), the lowest value of a variable (min), the highest value of a vari-
able (max) and the number of observations (N). Our full balanced panel contains
5,381,132 observations for 55,496 developers within a time period from July 2022
- July 2024.

49

Table A3: DESCRIPTIVE STATISTICS OF TOP MAINTAINERS WITHIN MAIN BANDWIDTH

Mean SD Min Max

AI Treatment

AI Total Days 4.46 19.06 0 264
AI Ever Used 0.13 0.34 0 1
AI Exposure Share 0.02 0.09 0 1
AI Days Used / Week 0.11 0.70 0 7

Work Activities

Coding 0.44 0.22 0 1
Project Management 0.37 0.19 0 1
All Activities 17.28 51.50 0 4, 942

Ranking

Normalized Ranking 0.62 60.33 −100 100

Note: The table shows univariate descriptive statistics for top developers within a
bandwidth of h ∈ [100, 100] with the arithmetic mean (mean) in the first column,
followed by the standard deviation (SD), the lowest value of a variable (min), the
highest value of a variable (max) and the number of observations (N) for top de-
veloper within the bandwidth of h ∈ [−100, 100]. Our full balanced panel contains
215,169 observations for 5,521 developers within a time period from July 2022 -
July 2023.

50

Table A4: DESCRIPTIVE STATISTICS OF TOP MAINTAINER FOR ALL WORK ACTIVITIES

Mean SD Min Max

Coding

Create Repository 0.04 0.32 0 173
Fork Repository 0.07 1.40 0 1, 327
Pull Request 1.03 15.52 0 5, 468
Push 10.15 236.12 0 85, 302

Project Management

Issue: Assigned 0.48 3.79 0 1, 616
Issue: Closed 1.97 17.21 0 4, 889
Issue: Created 0.30 3.97 0 1, 591
Issue: Comment Deleted 0.01 0.49 0 225
Issue: Labeled 1.94 43.13 0 10, 161
Issue: Merged 1.18 9.04 0 4, 338
Issue: Reopened 0.04 1.02 0 340
Issue: Review Requested 1.08 12.06 0 2, 687
Issue: Subscribed 1.47 8.91 0 1, 550

Note: The table shows univariate descriptive statistics with the arithmetic mean
(mean) in the first column, followed by the standard deviation (SD), the lowest
value of a variable (min), the highest value of a variable (max) across all individual
work activities that are included in the categories from Table A1. Our full balanced
panel contains 2,422,916 observations within a time period from July 2022 - July
2023.

51

Table A5: SUMMARY STATISTICS FOR ABILITY PROXIES

Mean SD Min Median Max

Max Centrality 0.129 0.222 0 0.0256 1
Number of Achievements 8.26 4.29 1 8 26
Number of Followers 91.74 402 1 15 17,650
GitHub Tenure 706 345 2 713 1,420

Note: This table contains summary statistics for the set of ability proxies con-
sidered for Hypotheses 4a and 4b. Max centrality the the largest share of com-
mits the developer is responsible for across all public repositories where they
have made at least one commits. Number of Achievements counts the cu-
mulative total of “badges” the developer has earned on the GitHub platform.
Number of followers count peers who subscribe to notifications that track the
developer’s public activity. GitHub tenure is measured by counting the number
of days since the developer first created their GitHub account.

52

Table A6: DIFFERENCES-IN-DIFFERENCES AND PROPENSITY SCORE MATCHING

Panel A: Differences-in-differences

Coding Project Management

1(Eligible)
0.004∗∗∗ 0.008∗∗∗ −0.011∗∗∗ −0.006∗∗∗

(0.001) (0.001) (0.002) (0.001)

Baseline
0.472∗∗∗ 0.461∗∗∗ 0.309∗∗∗ 0.312∗∗∗

(0.001) (0.001) (0.001) (0.001)

TE (%) 0.8 1.7 −3.6 −1.9
N 278,040 249,165 278,040 249,165
Controls ✓ ✓

Panel B: Propensity Score Matching

Coding Project Management

1(Eligible)
0.038∗∗∗ 0.042∗∗∗ −0.099∗∗∗ −0.083∗∗∗

(0.003) (0.003) (0.003) (0.003)

Baseline
0.413∗∗∗ 0.429∗∗∗ 0.417∗∗∗ 0.467∗∗∗

(0.001) (0.002) (0.001) (0.002)

TE (%) 9.3 9.8 −23.7 −17.8
N 108,376 108,376 108,376 108,376
Controls ✓ ✓

a Note: This table collects intent-to-treat coefficient estimates using differences-in-
differences (Panel A) and matching (Panel B). In Panel A, we select a subsample of
developers that were ranked h ∈ [−100, 0] in the first week of the general access pe-
riod and compare them with a set of developers ranked h ∈ (0, 100] who were never
eligible for complementary Copilot AI in the first year following general access. We
compare the difference in work patterns between these two groups up to one year before
GA with the difference up to one year after. The specifications are two-way fixed effect
(TWFE) models and include developer and week fixed effects. Treatment effects are
calculated relative to baseline mean task allocation for ineligible developers. In Panel B,
we take a sample of developers ranked h ∈ [−100, 0] and match them with a developer
ranked h ∈ (0, 100] using propensity scores. Propensity scores are derived from a lo-
gistic regression of the developers Copilot eligibility status on their rank and covariate
controls (platform experience, centrality, follower counts, and platform achievements).
The results in Panel B are robust to alternative matching procedures (nearest neighbor,
full matching, and coarsened exact matching). Robust standard errors are in parentheses:
∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

53

Table A7: HETEROGENEITY BY FIRM AFFILIATION

Coding Project Management

Firm Affiliated No Yes No Yes

1(Eligible)
0.0590∗∗∗ 0.0681∗∗∗ −0.1178∗∗∗−0.0953∗∗∗

(0.002) (0.005) (0.002) (0.004)

Baseline
0.4337∗∗∗ 0.4296∗∗∗ 0.3952∗∗∗ 0.4342∗∗∗

(0.001) (0.003) (0.001) (0.003)
Rel. TE (%) 13.6 15.9 −29.8 −21.9

N 240,825 28,721 240,825 28,721

Note: This table shows the coefficient estimates from the intent-to-
treat specification across each activity classification for top developers
that are eligible based on the internal GitHub ranking relative to those
who are not eligible through this pathway using a bandwidth of ranks
h ∈ [−100, 100]. The second and fourth columns contain the subset of
developers that are affiliated with a firm while the first and third columns
contain the subset of developers that are not affiliated with a firm. Time
frame: July, 2022 to July, 2023. Robust standard errors are in parentheses:
∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

54

Table A8: INTENT-TO-TREAT EFFECTS OF COPILOT ON AUTONOMOUS WORK

Number of Distinct
Collaborators

1(Eligible)
−17.251∗∗∗ −14.697∗∗∗

(0.346) (0.351)

Baseline
21.759∗∗∗ 29.947∗∗∗

(0.279) (0.246)

Rel. TE (%) −79.3 −49.1
N 161,155 155,113
Controls ✓

Note: This table shows the coefficient estimates from the intent-
to-treat specification that compares top developers that are eligi-
ble based on the internal GitHub ranking relative to those who
are not eligible through this pathway using a bandwidth of ranks
h ∈ [−100, 100]. The outcome is the cumulative mean number of
distinct collaborators the developer interacts with across all public
projects through the current period. A larger value for this measure
indicates that the developer interacts in repositories with more peers.
Covariate controls include the developer’s GitHub account age in
days, number of GitHub achievements, number of followers, and a
measure of their share of repository activity (i.e. centrality). Time
frame: July, 2022 to July, 2023. Robust standard errors are in paren-
theses: ∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

55

Appendix B Classification of Work Activities

Coding Project Management

Create Repository Created Project Board
Fork Repository Issue Assigned
Pull Request Issue Closed
Push Issue Comment Deleted

Issue Closed
Issue Labeled
Issue Merged
Issue Reopened
Issue Review Requested
Issue Subscribed
Reviewed Pull Request

Note: Each high-level activity, coding and
project management, is defined as the sum of
its disaggregated, granular activities.

56

Appendix C Robustness Checks

Figure C1: COVARIATE SMOOTHNESS

Centrality Followers

100 75 50 25 0 25 50 75 100
Maintainer's Rank

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ce
nt

ra
lit

y

Estimate:
 0.0174
(0.0232)

Free Access to AI
Other

100 75 50 25 0 25 50 75 100
Maintainer's Rank

3.0

3.5

4.0

4.5

5.0

5.5

6.0

(lo
g)

 F
ol

lo
we

rs

Estimate:
 0.0068
(0.1815)

Free Access to AI
Other

Achievements Tenure

100 75 50 25 0 25 50 75 100
Maintainer's Rank

6

7

8

9

10

Ac
hi

ev
em

en
ts

Estimate:
 0.0425
(0.4307)

Free Access to AI
Other

100 75 50 25 0 25 50 75 100
Maintainer's Rank

500

600

700

800

900

1000

Te
nu

re
 (a

ge
 o

f G
itH

ub
 a

cc
ou

nt
 in

 d
ay

s)

Estimate:
 -2.2747
(35.7684)

Free Access to AI
Other

Note: The figure shows the covariate smoothness check across the overall minimum ranking on GitHub for
(clockwise from upper left) a measure of the developer’s centrality within their repository, follower counts,
age of the developer’s GitHub account in days (tenure), and developer platform achievements. After the
general access period, developers with rankings below zero receive free access to the AI through the top
developer channel while those above do not. Time frame: Covariates are observed between January, 2021
and July, 2023. Maintainer rankings are observed form July 2022 through July 2023. Robust standard errors
are in parentheses.

57

Figure C2: COPILOT AI ADOPTION ACROSS RANKS WITH POLYNOMIAL OF DEGREE 2

100 75 50 25 0 25 50 75 100
Maintainer's Best Rank (overall minimum)

0

2

4

6

8

10

12

14

Co
pi

lo
t D

ay
s (

to
ta

l)

Estimate:
 11.1324
(2.2911)

Free Access to AI
Other

Note: The figure shows the total number of days the generative AI tool GitHub Copilot was used across the
overall minimum ranking based on the six top languages on GitHub with a quadratic fit on either side of
the threshold. Developers with rankings below 0 receive free access to the AI through the top developers
channel while those above do not. Time frame: July, 2022 to July, 2023. Robust standard errors are in
parentheses.

58

Figure C3: INTENT-TO-TREAT EFFECTS OF COPILOT AI WITH POLYNOMIAL OF DEGREE 2

Coding Project Management

100 75 50 25 0 25 50 75 100
Maintainers Rank

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Co
di

ng

Estimate:
 0.0508
(0.0031)

Free Access to AI
Other

100 75 50 25 0 25 50 75 100
Maintainers Rank

0.25

0.30

0.35

0.40

0.45

0.50

Pr
oj

ec
t M

an
ag

em
en

t

Estimate:
 -0.1143
(0.0026)

Free Access to AI
Other

Note: The figure shows the total number of days the generative AI tool Copilot is used across the overall
minimum ranking on GitHub using a quadratic fit on either side of the threshold. Developers with rankings
below zero receive free access to the AI through the top developers channel while those above do not. Time
frame: July, 2022 to July, 2023. Robust standard errors are in parentheses.

59

Figure C4: ITT OF VARYING BANDWIDTHS, POLYNOMIAL OF DEGREE ONE

Panel A: Polynomial of Degree 1
Coding Project Management

Panel B: Polynomial of Degree 2
Coding Project Management

Note: The figure shows the intent-to-treat (ITT) effects of the generative AI GitHub Copilot when crossing
the ranking threshold from the right to the left. Panel A (B) displays linear (quadratic) ITT effects. The
bandwidth of 100 is our baseline estimation using h ∈ [−100, 100]. Time frame: July, 2022 to July, 2023.
Confidence intervals are based on robust standard errors.

60

Table C1: MCCRARY DENSITY TEST

Ranking Frequency

1(Eligible)
−477.607
(417.169)

N 201

Note: This table shows results from a McCrary
(2008) test of eligibility manipulation for ranking
∈ [−100, 100] bandwidth. The outcome variable
is a count of the developer-week observations ag-
gregated to the rank level. Robust standard er-
rors are in parentheses: ∗∗∗ p < 0.001; ∗∗ p <
0.01; ∗ p < 0.05

61

Table C2: DIFFERENT KERNELS FOR COPILOT INTENT-TO-TREAT EFFECTS

Coding Project Management

Uniform Triangular Epanechnikov Uniform Triangular Epanechnikov

1(Eligible)
0.054∗∗∗ 0.052∗∗∗ 0.054∗∗∗ −0.100∗∗∗ −0.107∗∗∗ −0.110∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

N 215,169 215,169 215,169 215,169 215,169 215,169
a Note: This table shows the intent-to-treat effects of the generative AI tool Copilot on work activities of coding
and project management using a uniform, triangular, and Epanechnikov kernels. Our full balanced panel is observed
within a time period from July, 2022 to July, 2023. Robust standard errors are in parentheses: ∗∗∗ p < 0.001; ∗∗ p <
0.01; ∗ p < 0.05

62

Table C3: OPTIMAL BANDWIDTHS

Coding Project Management

MSE CER MSE CER

1(Eligible)
0.0429∗∗∗ 0.0233∗∗∗ −0.0997∗∗∗ −0.0509∗∗∗

(0.002) (0.002) (0.002) (0.003)

Baseline
0.4549∗∗∗ 0.4458∗∗∗ 0.3541∗∗∗ 0.3393∗∗∗

(0.002) (0.003) (0.002) (0.002)

Rel. TE (%) 9.4 5.2 -28.2 -15.0
Optimal Bandwidth [−47, 47] [−35, 35] [−51, 51] [−38, 38]
N 123,026 90,938 132,057 95,116

a Note: This table shows the intent-to-treat effects of the generative AI tool Copilot
on work activities of coding and project management using the optimal bandwidth
derived from the mean squared error (MSE) in columns 1 and 3 and the coverage
error rate (CER) estimator in columns 3 and 4 (Calonico, Cattaneo, and Farrell,
2020). Our full balanced panel is observed within a time period from July, 2022
to July, 2023. Robust standard errors are in parentheses: ∗∗∗ p < 0.001; ∗∗ p <
0.01; ∗ p < 0.05

63

Table C4: ABSOLUTE MEASURES

Coding Project Management

1(Eligible)
94.377∗∗∗ −68.497∗∗∗

(22.772) (10.761)

N 269,546 269,546
a Note: This table shows the intent-to-treat effects of the gen-
erative AI tool Copilot on work activities of coding and project
management using the absolute measures. Our full balanced
panel is observed within a time period from July, 2022 to
July, 2023. Robust standard errors are in parentheses: ∗∗∗ p <
0.001; ∗∗ p < 0.01; ∗ p < 0.05

64

Table C5: RESIDUAL

Comment Reaction Starring Unstarring Residual

1(Eligible)
−0.0136∗∗∗ 0.0184∗∗∗ 0.0452∗∗∗ 0.0060∗∗∗ 0.0561∗∗∗

(0.001) (0.001) (0.001) (0.000) (0.002)
Baseline 0.1040∗∗∗ 0.0264∗∗∗ 0.0346∗∗∗ 0.0033∗∗∗ 0.1683∗∗∗

(0.001) (0.000) (0.001) (0.000) (0.001)

N 269,546 269,546 269,546 269,546 269,546
a Note: This table shows the intent-to-treat effects of the generative AI tool Copilot
on work activities of the residual decomposed into comments, reactions, starring
and unstarring and jointly in the last column. Our full balanced panel is observed
within a time period from July, 2022 to July, 2023. Robust standard errors are in
parentheses: ∗∗∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05

65

Appendix D Details of the Economic Model

D.1 Baseline model: Comparative Statics
How will the optimal choice of these activites change as pc changes (e.g. ∂c⋆/∂pc and ∂m⋆/∂pc)?

Both Marshallians depend on the relative cost of core work, pc. The elasticity of substitution σ is
the key parameter which determines the sign of the relationship between core work and project
management, i.e. whether they are gross substitutes or complements.

∂c⋆

∂pc
=

−ω(βc

βm
σp

−(σ+1)
c + p−2σ

c)

(p1−σ
c + βm

βc
)2

(6)

∂m⋆

∂pc
=

ω(σ − 1) βc

βm
p−σ
c

(βc

βm
p1−σ
c + 1)2

(7)

This leads to two cases for coding and three cases for project management

∂c⋆

∂pc

{
= 0 ifσ = 0,

< 0 ifσ > 0,
(8)

∂m⋆

∂pc


= 0 ifσ = 1,

> 0 ifσ > 1,

< 0 if0 ≤ σ < 1.

(9)

For coding, an increase in the price is independent of σ and will always lead to a reduction in the
coding share, while the sign for project management is ambiguous. When σ = 1, then coding and
project management are neither perfect substitutes nor perfect complements (Cobb Douglas case).
When σ > 1 then the coding and project management are substitutes. When 0 ≤ σ < 1 then
coding and project management are complements and in the equal case perfect complements.

D.2 Model Extension
We extend the simple CES model to get insights into the mechanisms by splitting core work

and management through a nested CES approach. An agent chooses between four activities to
maximize utility, they are: autonomous core work c1, collaborative core work c2, autonomous
project management m1 and collaborative project management m2. We can similarly think about
the dimensions of exploratory core work c1, exploitative core work c2, exploratory project man-
agement m1 and exploitative project management exploration m2. The nested CES utility function
is then set up as follows:

66

u(c1, c2,m1,m2) =
(
α1/σ
c u(c1, c2)

σ−1
σ + α1/σ

m u(m1,m2)
σ−1
σ

) σ
σ−1

(10)

where the utility for the composite goods are defined as follows:

u(c1, c2) =

(
β1/ρ
c1

c
1−ρ
ρ

1 + β1/ρ
c2

c
1−ρ
ρ

2

) ρ
1−ρ

(11)

u(m1,m2) =

(
β1/τm
m1

m
τm−1
τm

1 + β1/τm
m2

m
τm−1
τm

2

) τm
τm−1

(12)

Since the relevant comparative static is around Pc, we keep Pc and Pm as CES aggregators
of subgood composite prices. After obtaining Marshallian demands for the composite goods
u(c1, c2) = u(c) and u(m1,m2) = u(m), and within each nested composite good, we can ob-
tain the final Marshallian demands:

c∗1 =
ω[

β
1
ρ
c1 + β

1
ρ
c2

((
Pc1

Pc2

)ρ
βc2

βc1

) ρ−1
ρ

] ρ
ρ−1

× 1(
αc

αm
Pm

(
Pm

Pc

)σ
+ Pc

) (13)

c∗2 =
ω[

β
1
ρ
c2 + β

1
ρ
c1

((
Pc2

Pc1

)ρ
βc1

βc2

) ρ−1
ρ

] ρ
ρ−1

× 1(
αc

αm
Pm

(
Pm

Pc

)σ
+ Pc

) (14)

m∗
1 =

ω[
β

1
τ
m1 + β

1
τ
m2

((
Pm1

Pm2

)τ
βm2

βm1

) τ−1
τ

] τ
τ−1

× 1(
αm

αc
Pc(

Pc

Pm
)σ + Pm

) (15)

m∗
2 =

ω[
β

1
τ
m2 + β

1
τ
m1

((
Pm2

Pm1

)τ
βm1

βm2

) τ−1
τ

] τ
τ−1

× 1(
αm

αc
Pc(

Pc

Pm
)σ + Pm

) (16)

The elasticity ρ determines how allocation shifts across the broader categories of core work and
project management, while σ and τ determine the within core work and within project management
allocation, respectively. If we consider the same price shock, due to AI on Pc, we arrive at the same
conclusion as in the baseline model. The relative demand of the overall composite good c increase
since the cost of coding has dropped. To understand the relative magnitude, we have to compare

67

the comparative statics for the within composite good comparison of c1 and c2. When the costs of
either one of the two goods is relatively lower (or the preferences are higher) then, we will shift
relatively more of our allocation towards that good. For example, when the price of autonomous
core work Pc1 is relatively lower than the price of collaborative core work, Pc2 , then individuals
are more likely to switch demand to autonomous work. The same logic holds true for project
management as well as exploratory and exploitative work.

68

	WP ONE cover_25-021.pdf
	WP TWO cover--25-021.pdf
	25-021_Generative AI and The Nature of Work.pdf
	Theoretical Framework
	Institutional Background
	The GitHub Platform
	GitHub Copilot

	Data
	Methodology: Natural Experiment
	Main Results
	Adoption of the Copilot Generative AI
	Generative AI induces a reallocation towards core work
	Generative AI enables more autonomous work
	Generative AI encourages experimentation
	Generative AI responses are stronger for lower ability workers

	Discussion
	Conclusion
	Appendices
	Additional Tables and Figures
	Classification of Work Activities
	Robustness Checks
	Details of the Economic Model
	Baseline model: Comparative Statics
	Model Extension

